Difference between revisions of "1969 IMO Problems/Problem 6"

(Solution)
Line 8: Line 8:
 
From AM-GM:
 
From AM-GM:
  
<math>\sqrt{AB} \le \frac{A+B}{2}</math>
+
<math>\sqrt{AB} \le \frac{A+B}{2}</math> with equality at "<math>A=B</math>
  
 
<math>4AB \le (A+B)^2</math>
 
<math>4AB \le (A+B)^2</math>
Line 30: Line 30:
 
<math>2(A+B) \le x_1y_1+x_2y_2+x_1y_2+x_2y_1-z_1^2-2z_1z_2-z_2^2</math>
 
<math>2(A+B) \le x_1y_1+x_2y_2+x_1y_2+x_2y_1-z_1^2-2z_1z_2-z_2^2</math>
  
$2(A+B) \le (x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2
+
<math>2(A+B) \le (x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2</math> [Equation 2]
  
{{solution}}
+
Therefore, we can can use [Equation 2] into [Equation 1] to get:
 +
 
 +
$\frac{8}{(x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2} \le \frac{1}{A}+\frac{1}{B}
 +
 
 +
 
 +
 
 +
{{alternate solutions}}
  
 
== See Also == {{IMO box|year=1969|num-b=5|after=Last Question}}
 
== See Also == {{IMO box|year=1969|num-b=5|after=Last Question}}

Revision as of 22:33, 18 November 2023

Problem

Prove that for all real numbers $x_1, x_2, y_1, y_2, z_1, z_2$, with $x_1 > 0, x_2 > 0, y_1 > 0, y_2 > 0, z_1 > 0, z_2 > 0, x_1y_1 - z_1^2 > 0, x_2y_2 - z_2^2 > 0$, the inequality\[\frac{8}{(x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2} \leq \frac{1}{x_1y_1 - z_1^2} + \frac{1}{x_2y_2 - z_2^2}\]is satisfied. Give necessary and sufficient conditions for equality.

Solution

Let $A=x_1y_1 - z_1^2>0$ and $B=x_2y_2 - z_2^2>0$

From AM-GM:

$\sqrt{AB} \le \frac{A+B}{2}$ with equality at "$A=B$

$4AB \le (A+B)^2$

$\frac{4}{A+B} \le \frac{A+B}{AB}$

$\frac{8}{2(A+B)} \le \frac{A+B}{AB}$

$\frac{8}{2(A+B)} \le \frac{1}{A}+\frac{1}{B}$ [Equation 1]

$(x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2=x_1y_1+x_2y_2+x_1y_2+x_2y_1-z_1^2-2z_1z_2-z_2^2$

$(x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2=(A+B)+x_1y_2+x_2y_1-2z_1z_2$

since $x_1y_1>z_1^2$ and $x_2y_2>z_2^2$,

then $x_1y_1+x_2y_2-z_1^2-z_2^2 \le x_1y_2+x_2y_1-2z_1z_2$

$(A+B) \le  x_1y_2+x_2y_1-2z_1z_2$

$2(A+B) \le x_1y_1+x_2y_2+x_1y_2+x_2y_1-z_1^2-2z_1z_2-z_2^2$

$2(A+B) \le (x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2$ [Equation 2]

Therefore, we can can use [Equation 2] into [Equation 1] to get:

$\frac{8}{(x_1 + x_2)(y_1 + y_2) - (z_1 + z_2)^2} \le \frac{1}{A}+\frac{1}{B}


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See Also

1969 IMO (Problems) • Resources
Preceded by
Problem 5
1 2 3 4 5 6 Followed by
Last Question
All IMO Problems and Solutions