Difference between revisions of "1964 IMO Problems/Problem 6"
(→Solution) |
(→Solution) |
||
Line 32: | Line 32: | ||
Since <math>\Delta D_{0}C_{2}C_{1}\sim \Delta CC_{2}C_{1}</math>, then <math>|CC_{1}|=|DD_{0}| \frac{|CC_{2}|}{|D_{0}C_{2}|}=3|DD_{0}|</math> | Since <math>\Delta D_{0}C_{2}C_{1}\sim \Delta CC_{2}C_{1}</math>, then <math>|CC_{1}|=|DD_{0}| \frac{|CC_{2}|}{|D_{0}C_{2}|}=3|DD_{0}|</math> | ||
− | Since <math>|AA_{2}|=|BB_{2}|=|CC_{2}|</math> and <math>AA_{1} \parallel BB_{1} \parallel CC_{1} \parallel DD_{0}</math>, then <math>\Delta A_{1}B_{1}C_{1}\parallel \Delta ABC</math> | + | Since <math>|AA_{2}|=|BB_{2}|=|CC_{2}|</math> and <math>AA_{1} \parallel BB_{1} \parallel CC_{1} \parallel DD_{0}</math>, |
+ | |||
+ | then <math>\Delta A_{1}B_{1}C_{1}\parallel \Delta ABC</math>, and <math>Area_{\Delta A_{1}B_{1}C_{1}}=Area_{\Delta ABC}</math> | ||
Let <math>h_{D}</math> be the perpendicular distance from <math>D</math> to <math>\Delta ABC</math> | Let <math>h_{D}</math> be the perpendicular distance from <math>D</math> to <math>\Delta ABC</math> | ||
− | Let <math>h_{\Delta A_{1}B_{1}C_{1}}</math> be the perpendicular distance from <math>\Delta A_{1}B_{1}C_{1}</math> to <math>\Delta ABC | + | Let <math>h_{\Delta A_{1}B_{1}C_{1}}</math> be the perpendicular distance from <math>\Delta A_{1}B_{1}C_{1}</math> to <math>\Delta ABC</math> |
<math>\frac{h_{\Delta A_{1}B_{1}C_{1}}}{h_{D}}=\frac{|AA_{2}|}{|D_{0}A_{2}|}=\frac{|BB_{2}|}{|D_{0}B_{2}|}=\frac{|CC_{2}|}{|D_{0}C_{2}|}=3</math> | <math>\frac{h_{\Delta A_{1}B_{1}C_{1}}}{h_{D}}=\frac{|AA_{2}|}{|D_{0}A_{2}|}=\frac{|BB_{2}|}{|D_{0}B_{2}|}=\frac{|CC_{2}|}{|D_{0}C_{2}|}=3</math> |
Revision as of 23:01, 16 November 2023
Problem
In tetrahedron , vertex is connected with , the centroid of . Lines parallel to are drawn through and . These lines intersect the planes and in points and , respectively. Prove that the volume of is one third the volume of . Is the result true if point is selected anywhere within ?
Solution
Let be the point where line intersects line
Let be the point where line intersects line
Let be the point where line intersects line
From centroid properties we have:
Therefore,
Since , then
Since , then
Since , then
Since and ,
then , and
Let be the perpendicular distance from to
Let be the perpendicular distance from to
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1964 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
All IMO Problems and Solutions |