Difference between revisions of "2023 AMC 12B Problems/Problem 9"

(Note)
Line 22: Line 22:
  
 
~Technodoggo ~Minor formatting change: e_is_2.71828
 
~Technodoggo ~Minor formatting change: e_is_2.71828
 +
 +
==Solution 2 (Graphing)==
 +
We first consider the lattice points that satisfy <math>||x|-1| = 0</math> and <math>||y|-1| = 1</math>. The lattice points satisfying these equations
 +
are <math>(1,0), (1,2), (1,-2), (-1,0), (-1,2),</math> and <math>(-1,-2).</math> By symmetry, we also have points <math>(0,1), (2,1), (-2,1), (0,-1),
 +
(2,-1),</math> and  <math>(-2,-1)</math>  when  <math>||x|-1| = 1</math> and <math>||y|-1| = 0</math>.  Graphing and connecting these points, we form 5 squares. However,
 +
we can see that any point within the square in the middle does not satisfy the given inequality (take <math>(0,0)</math>, for instance). As
 +
noted in the above solution, each square has a diagonal <math>2</math> for an area of <math>\frac{2^2}{2} = 2</math>, so the total area is <math>4\cdot2 =</math>
 +
<math>\boxed{\text{(B)} 8}.</math> 
 +
 +
~ Brian__Liu
  
 
==Note==
 
==Note==

Revision as of 23:01, 15 November 2023

The following problem is from both the 2023 AMC 10B #13 and 2023 AMC 12B #9, so both problems redirect to this page.

Problem

What is the area of the region in the coordinate plane defined by

$| | x | - 1 | + | | y | - 1 | \le 1$?

$\text{(A)}\ 2 \qquad \text{(B)}\ 8 \qquad \text{(C)}\ 4 \qquad \text{(D)}\ 15 \qquad \text{(E)}\ 12$

Solution

First consider, $|x-1|+|y-1| \le 1.$ We can see that it's a square with radius 1 (diagonal 2). The area of the square is $\sqrt{2}^2 = 2.$

Next, we add one more absolute value and get $|x-1|+||y|-1| \le 1.$ This will double the square reflecting over x-axis.

So now we got 2 squares.

Finally, we add one more absolute value and get $||x|-1|+||y|-1| \le 1.$ This will double the squares reflecting over y-axis.

In the end, we got 4 squares. The total area is $4\cdot2 =$ $\boxed{\text{(B)} 8}$

~Technodoggo ~Minor formatting change: e_is_2.71828

Solution 2 (Graphing)

We first consider the lattice points that satisfy $||x|-1| = 0$ and $||y|-1| = 1$. The lattice points satisfying these equations are $(1,0), (1,2), (1,-2), (-1,0), (-1,2),$ and $(-1,-2).$ By symmetry, we also have points $(0,1), (2,1), (-2,1), (0,-1), (2,-1),$ and $(-2,-1)$ when $||x|-1| = 1$ and $||y|-1| = 0$. Graphing and connecting these points, we form 5 squares. However, we can see that any point within the square in the middle does not satisfy the given inequality (take $(0,0)$, for instance). As noted in the above solution, each square has a diagonal $2$ for an area of $\frac{2^2}{2} = 2$, so the total area is $4\cdot2 =$ $\boxed{\text{(B)} 8}.$

~ Brian__Liu

Note

This problem is very similar to a past AIME problem (1997 P13)

https://artofproblemsolving.com/wiki/index.php/1997_AIME_Problems/Problem_13

~ CherryBerry

Video Solution 1 by OmegaLearn

https://youtu.be/300Ek9E-RrA


See Also

2023 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png