Difference between revisions of "1996 AIME Problems/Problem 11"

(Problem)
(this cannot be right .... *double checks* *triple checks* ... the answer is never 0 ...)
Line 2: Line 2:
 
Let <math>\mathrm {P}</math> be the product of the roots of <math>z^6+z^4+z^3+z^2+1=0</math> that have an imaginary part, and suppose that <math>\mathrm {P}=r(\cos{\theta^{\circ}}+i\sin{\theta^{\circ}})</math>, where <math>0<r</math> and <math>0\leq \theta <360</math>. Find <math>\theta</math>.
 
Let <math>\mathrm {P}</math> be the product of the roots of <math>z^6+z^4+z^3+z^2+1=0</math> that have an imaginary part, and suppose that <math>\mathrm {P}=r(\cos{\theta^{\circ}}+i\sin{\theta^{\circ}})</math>, where <math>0<r</math> and <math>0\leq \theta <360</math>. Find <math>\theta</math>.
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
{{solution}}
+
=== Solution 1 ===
 +
<cmath>\begin{eqnarray*}
 +
0 &=& z^6 - z + z^4 + z^3 + z^2 + z + 1 = z(z^5 - 1) + \frac{z^5-1}{z-1}\\
 +
0 &=& \frac{(z^5 - 1)(z(z-1)+1)}{z-1}\\
 +
0 &=& \frac{(z^2-z+1)(z^5-1)}{z-1}
 +
\end{eqnarray*}</cmath>
 +
 
 +
Thus <math>z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis} \frac{360 k}{5}, k = 1, 2, \ldots 4</math>, or <math>z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis} 60, 300</math>. Therefore all of the roots are complex, and the answer is <math>\boxed{0}</math>.
 +
 
 +
=== Solution 2 ===
 +
 
 
== See also ==
 
== See also ==
*[[1996 AIME Problems]]
+
{{AIME box|year=1996|num-b=10|num-a=12}}
  
{{AIME box|year=1996|num-b=10|num-a=12}}
+
[[Category:Intermediate Complex Numbers Problems]]

Revision as of 19:00, 27 November 2007

Problem

Let $\mathrm {P}$ be the product of the roots of $z^6+z^4+z^3+z^2+1=0$ that have an imaginary part, and suppose that $\mathrm {P}=r(\cos{\theta^{\circ}}+i\sin{\theta^{\circ}})$, where $0<r$ and $0\leq \theta <360$. Find $\theta$.

Solution

Solution 1

\begin{eqnarray*} 0 &=& z^6 - z + z^4 + z^3 + z^2 + z + 1 = z(z^5 - 1) + \frac{z^5-1}{z-1}\\ 0 &=& \frac{(z^5 - 1)(z(z-1)+1)}{z-1}\\ 0 &=& \frac{(z^2-z+1)(z^5-1)}{z-1} \end{eqnarray*}

Thus $z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis} \frac{360 k}{5}, k = 1, 2, \ldots 4$, or $z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis} 60, 300$. Therefore all of the roots are complex, and the answer is $\boxed{0}$.

Solution 2

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions