Difference between revisions of "2023 AMC 10B Problems/Problem 7"
Line 2: | Line 2: | ||
<math>\text{(A)}\ 24^{\circ} \qquad \text{(B)}\ 35^{\circ} \qquad \text{(C)}\ 30^{\circ} \qquad \text{(D)}\ 32^{\circ} \qquad \text{(E)}\ 20^{\circ}</math> | <math>\text{(A)}\ 24^{\circ} \qquad \text{(B)}\ 35^{\circ} \qquad \text{(C)}\ 30^{\circ} \qquad \text{(D)}\ 32^{\circ} \qquad \text{(E)}\ 20^{\circ}</math> | ||
+ | |||
+ | == Solution 1== | ||
+ | |||
+ | First, let's call the center of both squares <math>I</math>. Then, <math>\angle{AIE} = 20</math>, and since <math>\overline{EI} = \overline{AI}</math>, <math>\angle{AEI} = \angle{EAI} = 80</math>. Then, we know that <math>AI</math> bisects angle <math>\angle{DAB}</math>, so <math>\angle{BAI} = \angle{DAI} = 45</math>. Subtracting <math>45</math> from <math>80</math>, we get <math>\fbox{\bf{35}}</math> |
Revision as of 15:27, 15 November 2023
Sqrt is rotated clockwise about its center to obtain square , as shown below(Please help me add diagram and then remove this). What is the degree measure of ?
Solution 1
First, let's call the center of both squares . Then, , and since , . Then, we know that bisects angle , so . Subtracting from , we get