Difference between revisions of "1991 IMO Problems/Problem 5"
(→Solution) |
(→Solution) |
||
Line 24: | Line 24: | ||
<math>\frac{1}{3}\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\le \sqrt[3]{\prod_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}}</math> | <math>\frac{1}{3}\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\le \sqrt[3]{\prod_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}}</math> | ||
+ | <math>\frac{1}{3}\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\le 1</math> | ||
+ | |||
+ | <math>\sum_{i=1}^{3}\frac{sin(A_{i}-\alpha_{i})}{sin(\alpha_{i})}\le 3</math> | ||
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 11:31, 12 November 2023
Problem
Let be a triangle and an interior point of . Show that at least one of the angles is less than or equal to .
Solution
Let , , and be , , , respcetively.
Let , , and be , , , respcetively.
Using law of sines on we get: , therefore,
Using law of sines on we get: , therefore,
Using law of sines on we get: , therefore,
Multiply all three equations we get:
Using we get:
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.