Difference between revisions of "2006 AIME II Problems/Problem 11"

m
m (minor fixes)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
A sequence is defined as follows <math> a_1=a_2=a_3=1, </math> and, for all positive integers <math> n, a_{n+3}=a_{n+2}+a_{n+1}+a_n. </math> Given that <math> a_{28}=6090307, a_{29}=11201821, </math> and <math> a_{30}=20603361, </math> find the remainder when <math>\sum^{28}_{k=1} a_k </math> is divided by 1000.
+
A [[sequence]] is defined as follows <math> a_1=a_2=a_3=1, </math> and, for all positive integers <math> n, a_{n+3}=a_{n+2}+a_{n+1}+a_n. </math> Given that <math> a_{28}=6090307, a_{29}=11201821, </math> and <math> a_{30}=20603361, </math> find the [[remainder]] when <math>\sum^{28}_{k=1} a_k </math> is divided by 1000.
  
 
== Solution ==
 
== Solution ==
Define the sum as <math>x</math>. Notice that <math>a_n\ = a_{n + 3} - a_{n + 2} - a_{n + 1} </math>, so the sum will be:
+
Define the sum as <math>s</math>. Since <math>a_n\ = a_{n + 3} - a_{n + 2} - a_{n + 1} </math>, the sum will be:
:<math>x = (a_4 - a_3 - a_2) + (a_5 - a_4 - a_3) + \ldots (a_{30} - a_{29} - a_{28}) + a_{28}</math>
+
:<math>s = (a_4 - a_3 - a_2) + (a_5 - a_4 - a_3) + \ldots (a_{30} - a_{29} - a_{28}) + a_{28}</math>
:<math>x = (a_4+ a_5 \ldots a_{30}) - (a_3 + a_4 + \ldots a_{29}) - (a_2 + a_3 + \ldots a_{28}) + a_{28} + (a_1 - a_1)</math>
+
:<math>s = (a_4+ a_5 \ldots a_{30}) - (a_3 + a_4 + \ldots a_{29}) - (a_2 + a_3 + \ldots a_{28}) + a_{28} + (a_1 - a_1)</math>
  
The first two groupings almost completely cancel. The third resembles <math>x</math>.
+
The first two groups [[telescope]]. The third resembles <math>s</math>.
  
:<math>x\ = a_1 - a_3 + a_{28} + a_{30} - x</math>
+
:<math>s\ = a_1 - a_3 + a_{28} + a_{30} - s</math>
:<math>2x\ = a_{28} + a_{30}</math>
+
:<math>2s\ = a_{28} + a_{30}</math>
:<math>x\ = \frac{a_{28} + a_{30}}{2}</math>  
+
:<math>s\ = \frac{a_{28} + a_{30}}{2}</math>  
  
<math>a_{28}</math> and <math>a_{30}</math> are both given; the last four digits of the sum is <math>3668</math>, and half of that is <math>1834</math>. Therefore, the answer is <math>834</math>.
+
<math>a_{28}</math> and <math>a_{30}</math> are both given; the last four digits of their sum is <math>3668</math>, and half of that is <math>1834</math>. Therefore, the answer is <math>834</math>.
  
 
== See also ==
 
== See also ==

Revision as of 13:54, 25 November 2007

Problem

A sequence is defined as follows $a_1=a_2=a_3=1,$ and, for all positive integers $n, a_{n+3}=a_{n+2}+a_{n+1}+a_n.$ Given that $a_{28}=6090307, a_{29}=11201821,$ and $a_{30}=20603361,$ find the remainder when $\sum^{28}_{k=1} a_k$ is divided by 1000.

Solution

Define the sum as $s$. Since $a_n\ = a_{n + 3} - a_{n + 2} - a_{n + 1}$, the sum will be:

$s = (a_4 - a_3 - a_2) + (a_5 - a_4 - a_3) + \ldots (a_{30} - a_{29} - a_{28}) + a_{28}$
$s = (a_4+ a_5 \ldots a_{30}) - (a_3 + a_4 + \ldots a_{29}) - (a_2 + a_3 + \ldots a_{28}) + a_{28} + (a_1 - a_1)$

The first two groups telescope. The third resembles $s$.

$s\ = a_1 - a_3 + a_{28} + a_{30} - s$
$2s\ = a_{28} + a_{30}$
$s\ = \frac{a_{28} + a_{30}}{2}$

$a_{28}$ and $a_{30}$ are both given; the last four digits of their sum is $3668$, and half of that is $1834$. Therefore, the answer is $834$.

See also

2006 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions