Difference between revisions of "2023 AMC 12A Problems/Problem 20"
Isabelchen (talk | contribs) (→Solution 3 (Recursion)) |
Isabelchen (talk | contribs) m (→Solution 3 (Recursion)) |
||
Line 95: | Line 95: | ||
Let the sum of the <math>n^{th}</math> row be <math>S_n</math>. | Let the sum of the <math>n^{th}</math> row be <math>S_n</math>. | ||
− | For each of the <math>n-2</math> non-1 entries in the <math>n^{th}</math> row, they are equal to the sum of the <math>2</math> numbers diagonally above it in the <math>n-1^{th}</math> row plus <math>1</math>. Therefore all <math>n-3</math> non-1 entries in the <math>n-1^{th}</math> appear twice in sum for the <math>n-2</math> non-1 entries in the <math>n^{th}</math> row, the <math> | + | For each of the <math>n-2</math> non-1 entries in the <math>n^{th}</math> row, they are equal to the sum of the <math>2</math> numbers diagonally above it in the <math>n-1^{th}</math> row plus <math>1</math>. Therefore all <math>n-3</math> non-1 entries in the <math>n-1^{th}</math> row appear twice in sum for the <math>n-2</math> non-1 entries in the <math>n^{th}</math> row, the two <math>1</math>s on each end of the <math>n-1^{th}</math> row only appear once in the sum for the <math>n-2</math> non-1 entries in the <math>n^{th}</math> row. Additionally, additional <math>1</math>s are placed at each end of the <math>n^{th}</math> row. Hence, <math>S_n = 2(S_{n-1} - 1) + n-2 + 1 + 1 = 2 S_{n-1} + n - 2</math> |
<cmath>S_n = 2 S_{n-1} + n - 2</cmath> | <cmath>S_n = 2 S_{n-1} + n - 2</cmath> |
Revision as of 22:30, 10 November 2023
Contents
Problem
Rows 1, 2, 3, 4, and 5 of a triangular array of integers are shown below.
Each row after the first row is formed by placing a 1 at each end of the row, and each interior entry is 1 greater than the sum of the two numbers diagonally above it in the previous row. What is the units digits of the sum of the 2023 numbers in the 2023rd row?
Solution 1
First, let be the sum of the th row. Now, with some observations and math instinct, we can guess that .
Now we try to prove it by induction,
(works for base case)
By definition from the question, the next row is always
Double the sum of last row (Imagine ach number from last row branches off toward left and right to the next row), plus # of new row, minus 2 (leftmost and rightmost are just 1)
Which gives us
Hence, proven
Last, simply substitute , we get
Last digit of is ,
~lptoggled
Solution 2
Let the sum of the numbers in row be . Let each number in row be where .
Then From this we can establish:
Let
From this we have:
The problem requires us to find the last digit of . We can use modular arithmetic. ~luckuso
Solution 3 (Recursion)
Let the sum of the row be .
For each of the non-1 entries in the row, they are equal to the sum of the numbers diagonally above it in the row plus . Therefore all non-1 entries in the row appear twice in sum for the non-1 entries in the row, the two s on each end of the row only appear once in the sum for the non-1 entries in the row. Additionally, additional s are placed at each end of the row. Hence,
, . By using the recursive formula,
is a geometric sequence by a ratio of
,
The unit digit of powers of is periodic by a cycle of digits: , , , . , the unit digit of is .
Therefore, the unit digit of is
Video Solution 1 by OmegaLearn
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.