Difference between revisions of "2023 AMC 10A Problems/Problem 17"

(Solution: Added a diagram)
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92</math>
 
<math>\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92</math>
  
==Solution==
+
==Solution 1==
 
<asy>
 
<asy>
 
/* ~ItsMeNoobieboy */
 
/* ~ItsMeNoobieboy */
Line 44: Line 44:
  
 
~Gabe Horn ~ItsMeNoobieboy
 
~Gabe Horn ~ItsMeNoobieboy
 +
 +
==Solution 2==
 +
Let BP=y and AP=z. We get 30^2+y^2=z^2. Subtracting y^2 on both sides, we get 30^2=z^2-y^2. Factoring, we get 30^2=(z-y)(z+y). Since y and z are integers, both z-y and z+y have to be even or both have to be odd. We also have y<31. We can pretty easily see now that z-y=18 and z+y=50. Thus, y=16 and z=34. We now get CP=12. We do the same trick again. Let DQ=a and AQ=b. Thus, 28^2=(b+a)(b-a). We can get b+a=56 and b-a=14. Thus, b=35 and a=21. We get CQ=9 and by the Pythagorean Theorem, we have PQ=15. We get AP+PQ+AQ=34+15+35=84. Our answer is A.
 +
 +
If you want to see a video solution on this solution, look at Video Solution 1.
 +
 +
-paixiao
 +
==Video Solution 1==
 +
https://www.youtube.com/watch?v=eO_axHSmum4
 +
 +
-paixiao
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2023|ab=A|num-b=16|num-a=18}}
 
{{AMC10 box|year=2023|ab=A|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 13:41, 10 November 2023

Problem

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overline{BC}$ and $\overline{CD}$ respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$?

$\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92$

Solution 1

[asy] /* ~ItsMeNoobieboy */ size(200); pair A, B, C, D, P, Q; A = (0,28/30); B = (1,28/30); C = (1,0); D = (0,0); P = (1,12/30); Q = (21/30,0); draw(A--B--C--D--cycle); draw(A--P--Q--cycle); dot("$A$",A,NW,linewidth(4)); dot("$B$",B,NE,linewidth(4)); dot("$C$",C,SE,linewidth(4)); dot("$D$",D,SW,linewidth(4)); dot("$P$",P,E,linewidth(4)); dot("$Q$",Q,S,linewidth(4)); label("$30$",midpoint(A--B),N); label("$16$",midpoint(B--P),E); label("$34$",midpoint(A--P),NE, red); label("$28$",midpoint(A--D),W); label("$21$",midpoint(D--Q),S); label("$35$",midpoint(A--Q),SW, red); label("$9$",midpoint(Q--C),S); label("$12$",midpoint(C--P),E); label("$15$",midpoint(Q--P),SE, red); [/asy]

We know that all side lengths are integers, so we can test Pythagorean triples for all triangles.

First, we focus on $\triangle{ABP}$. The length of $AB$ is $30$, and the possible Pythagorean triples $\triangle{ABP}$ can be are $(3, 4, 5), (5, 12, 13), (8, 15, 17),$ where the value of one leg is a factor of $30$. Testing these cases, we get that only $(8, 15, 17)$ is a valid solution because the other triangles result in another leg that is greater than $28$, the length of $\overline{BC}$. Thus, we know that $BP = 16$ and $AP = 34$.

Next, we move on to $\triangle{QDA}$. The length of $AD$ is $28$, and the possible triples are $(3, 4, 5)$ and $(7, 24, 25)$. Testing cases again, we get that $(3, 4, 5)$ is our triple. We get the value of $DQ = 21$, and $AQ = 35$.

We know that $CQ = CD - DQ$ which is $9$, and $CP = BC - BP$ which is $12$. $\triangle{CPQ}$ is therefore a right triangle with side length ratios ${3, 4, 5}$, and the hypotenuse is equal to $15$. $\triangle{APQ}$ has side lengths $34, 35,$ and $15,$ so the perimeter is equal to $34 + 35 + 15 = \boxed{\textbf{(A) } 84}.$

~Gabe Horn ~ItsMeNoobieboy

Solution 2

Let BP=y and AP=z. We get 30^2+y^2=z^2. Subtracting y^2 on both sides, we get 30^2=z^2-y^2. Factoring, we get 30^2=(z-y)(z+y). Since y and z are integers, both z-y and z+y have to be even or both have to be odd. We also have y<31. We can pretty easily see now that z-y=18 and z+y=50. Thus, y=16 and z=34. We now get CP=12. We do the same trick again. Let DQ=a and AQ=b. Thus, 28^2=(b+a)(b-a). We can get b+a=56 and b-a=14. Thus, b=35 and a=21. We get CQ=9 and by the Pythagorean Theorem, we have PQ=15. We get AP+PQ+AQ=34+15+35=84. Our answer is A.

If you want to see a video solution on this solution, look at Video Solution 1.

-paixiao

Video Solution 1

https://www.youtube.com/watch?v=eO_axHSmum4

-paixiao

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png