Difference between revisions of "2023 AMC 10A Problems/Problem 21"
Walmartbrian (talk | contribs) |
Vincentli10 (talk | contribs) (question options and see also) |
||
Line 12: | Line 12: | ||
The roots of <math>P(x)</math> are integers, with one exception. The root that is not an integer can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime integers. What is <math>m+n</math>? | The roots of <math>P(x)</math> are integers, with one exception. The root that is not an integer can be written as <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime integers. What is <math>m+n</math>? | ||
+ | |||
+ | <math>\textbf{(A) }41\qquad\textbf{(B) }43\qquad\textbf{(C) }45\qquad\textbf{(D) }47\qquad\textbf{(E) }49</math> | ||
==Solution 1== | ==Solution 1== | ||
Line 26: | Line 28: | ||
== Video Solution 1 by OmegaLearn == | == Video Solution 1 by OmegaLearn == | ||
https://youtu.be/aOL04sKGyfU | https://youtu.be/aOL04sKGyfU | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2023|ab=A|num-b=20|num-a=22}} | ||
+ | {{MAA Notice}} |
Revision as of 20:40, 9 November 2023
Let be the unique polynomial of minimal degree with the following properties:
- has a leading coefficient ,
- is a root of ,
- is a root of ,
- is a root of , and
- is a root of .
The roots of are integers, with one exception. The root that is not an integer can be written as , where and are relatively prime integers. What is ?
Solution 1
From the problem statement, we know , , and . Therefore, we know that , , and are roots. Because of this, we can factor as , where is the unknown root. Plugging in gives , so . Therefore, our answer is , or
~aiden22gao
~cosinesine
~walmartbrian
Video Solution 1 by OmegaLearn
See Also
2023 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.