Difference between revisions of "2023 AMC 10A Problems/Problem 11"
(added problem) |
(removed quote tags) |
||
Line 1: | Line 1: | ||
− | + | A square of area <math>2</math> is inscribed in a square of area <math>3</math>, creating four congruent triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle? | |
[asy] | [asy] | ||
size(200); | size(200); | ||
Line 17: | Line 17: | ||
draw(E--F--G--H--cycle); | draw(E--F--G--H--cycle); | ||
[/asy] | [/asy] | ||
− | <math>\textbf{(A) }\frac15\qquad\textbf{(B) }\frac14\qquad\textbf{(C) }2-\sqrt3\qquad\textbf{(D) }\sqrt3-\sqrt2\qquad\textbf{(E) }\sqrt2-1</math> | + | <math>\textbf{(A) }\frac15\qquad\textbf{(B) }\frac14\qquad\textbf{(C) }2-\sqrt3\qquad\textbf{(D) }\sqrt3-\sqrt2\qquad\textbf{(E) }\sqrt2-1</math> |
Revision as of 15:02, 9 November 2023
A square of area is inscribed in a square of area , creating four congruent triangles, as shown below. What is the ratio of the shorter leg to the longer leg in the shaded right triangle? [asy] size(200); defaultpen(linewidth(0.6pt)+fontsize(10pt)); real y = sqrt(3); pair A,B,C,D,E,F,G,H; A = (0,0); B = (0,y); C = (y,y); D = (y,0); E = ((y + 1)/2,y); F = (y, (y - 1)/2); G = ((y - 1)/2, 0); H = (0,(y + 1)/2); fill(H--B--E--cycle, gray); draw(A--B--C--D--cycle); draw(E--F--G--H--cycle); [/asy]