Difference between revisions of "2006 iTest Problems/Problem 12"
m |
m (→Problem) |
||
Line 7: | Line 7: | ||
<math>\text{(A) }\frac{1}{6!}\qquad \text{(B) }\frac{1}{7!}\qquad \text{(C) }\frac{1}{8!}\qquad \text{(D) }\frac{1}{9!}\qquad \text{(E) }\frac{1}{10!}\qquad \text{(F) }\frac{1}{11!}\qquad\\ \\ \text{(G) }\frac{1}{12!}\qquad \text{(H) }\frac{2}{8!}\qquad \text{(I) }\frac{2}{10!}\qquad \text{(J) }\frac{2}{12!}\qquad \text{(K) }\frac{1}{20!}\qquad \text{(L) }\text{none of the above}\qquad</math> | <math>\text{(A) }\frac{1}{6!}\qquad \text{(B) }\frac{1}{7!}\qquad \text{(C) }\frac{1}{8!}\qquad \text{(D) }\frac{1}{9!}\qquad \text{(E) }\frac{1}{10!}\qquad \text{(F) }\frac{1}{11!}\qquad\\ \\ \text{(G) }\frac{1}{12!}\qquad \text{(H) }\frac{2}{8!}\qquad \text{(I) }\frac{2}{10!}\qquad \text{(J) }\frac{2}{12!}\qquad \text{(K) }\frac{1}{20!}\qquad \text{(L) }\text{none of the above}\qquad</math> | ||
− | (Clarification: the <math>\text{ | + | (Clarification: the <math>n\text{th}</math> question has <math>n</math> answer choices, where <math>n</math> goes from <math>1</math> to <math>20</math>) |
+ | |||
==Solution== | ==Solution== |
Revision as of 22:13, 3 November 2023
Contents
Problem
What is the highest possible probability of getting of these multiple choice questions correct, given that you don't know how to work any of them and are forced to blindly guess on each one?
(Clarification: the question has answer choices, where goes from to )