Difference between revisions of "2017 AMC 10B Problems/Problem 16"

(Clarify counting of 4-digit integers without 0.)
m (Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
We can use complementary counting. There are <math>2017</math> positive integers in total to consider, and there are <math>9</math> one-digit integers, <math>9 \cdot 9 = 81</math> two digit integers without a zero, <math>9 \cdot 9 \cdot 9</math> three digit integers without a zero, and <math>9 \cdot 9 \cdot 9 = 729</math> four-digit integers starting with a 1 without a zero. Therefore, the answer is <math>2017 - 9 - 81 - 729 - 729 = \boxed{\textbf{(A) }469}</math>.
+
We can use complementary counting. There are <math>2017</math> positive integers in total to consider, and there are <math>9</math> one-digit integers, <math>9 \cdot 9 = 81</math> two digit integers without a zero, <math>9 \cdot 9 \cdot 9 = 729</math> three digit integers without a zero, and <math>9 \cdot 9 \cdot 9 = 729</math> four-digit integers starting with a 1 without a zero. Therefore, the answer is <math>2017 - 9 - 81 - 729 - 729 = \boxed{\textbf{(A) }469}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2017|ab=B|num-b=15|num-a=17}}
 
{{AMC10 box|year=2017|ab=B|num-b=15|num-a=17}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 22:39, 9 October 2023

Problem

How many of the base-ten numerals for the positive integers less than or equal to $2017$ contain the digit $0$?

$\textbf{(A)}\ 469\qquad\textbf{(B)}\ 471\qquad\textbf{(C)}\ 475\qquad\textbf{(D)}\ 478\qquad\textbf{(E)}\ 481$

Solution

We can use complementary counting. There are $2017$ positive integers in total to consider, and there are $9$ one-digit integers, $9 \cdot 9 = 81$ two digit integers without a zero, $9 \cdot 9 \cdot 9 = 729$ three digit integers without a zero, and $9 \cdot 9 \cdot 9 = 729$ four-digit integers starting with a 1 without a zero. Therefore, the answer is $2017 - 9 - 81 - 729 - 729 = \boxed{\textbf{(A) }469}$.

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png