Difference between revisions of "2008 AMC 10B Problems/Problem 15"
Bburubburu (talk | contribs) (→Solution) |
Bburubburu (talk | contribs) (→Solution) |
||
Line 22: | Line 22: | ||
− | ~qkddud | + | ~qkddud (edited by aopsthedude and bburubburu) |
== Video Solution by OmegaLearn == | == Video Solution by OmegaLearn == |
Revision as of 10:25, 8 October 2023
Problem
How many right triangles have integer leg lengths and and a hypotenuse of length , where ?
Solution
By the Pythagorean theorem,
This means that .
We know that and that .
We also know that is odd and thus is odd, since the right side of the equation is odd. is even. is odd.
So , but if , then .
Thus
The answer is .
~qkddud (edited by aopsthedude and bburubburu)
Video Solution by OmegaLearn
https://youtu.be/euz1azVKUYs?t=135
~ pi_is_3.14
See also
2008 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.