Difference between revisions of "User:Temperal/The Problem Solver's Resource Tips and Tricks"
(template) |
m (space) |
||
Line 10: | Line 10: | ||
*Remember that substitution is a useful technique! Example problem: | *Remember that substitution is a useful technique! Example problem: | ||
===Example Problem Number 1=== | ===Example Problem Number 1=== | ||
− | If <math>\tan x+\tan y=25</math> and <math>\cot x+\ cot y=30</math>, find <math>\tan(x+y)</math>. | + | If <math>\tan x+\tan y=25</math> and <math>\cot x+\cot y=30</math>, find <math>\tan(x+y)</math>. |
====Solution==== | ====Solution==== |
Revision as of 12:24, 23 November 2007
Other Tips and TricksThis is a collection of general techniques for solving problems.
Example Problem Number 1If and , find . SolutionLet , . Thus, , , so , hence , which turns out to be . This technique can also be used to solve quadratics of high degrees, i.e. ; let , and solve from there.
Example Problem Number 2How many quadruples are there such that and are all odd? SolutionSince they're odd, can each be expressed as for some positive integer (or zero) . Thus:
Binomial coefficients will yield the answer of .
|