Difference between revisions of "2022 AMC 12A Problems/Problem 22"
MRENTHUSIASM (talk | contribs) m (→Solution 4 (Fast)) |
Mathboy282 (talk | contribs) m (Info) |
||
Line 73: | Line 73: | ||
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com) | ||
− | ==Solution 2== | + | ==Solution 2 (Incomplete)== |
Because <math>z^2 - cz + 10 = 0</math>, notice that <math>|z_1||z_2|=|10|=10</math>. Furthermore, note that because <math>c</math> is real, <math>z_2=\bar z_1</math>. Thus, <math>\frac{1}{z_1}=\frac{\bar z_1}{z_1\cdot{\bar z_1}}=\frac{z_2}{|z_1|^2}=\frac{z_2}{100}</math>. Similarly, <math>\frac{1}{z_2}=\frac{z_1}{100}</math>. On the complex coordinate plane, let <math>z_1=A_2</math>, <math>z_2=B_2</math>,<math>\frac{1}{z_2}=A_1</math>, <math>\frac{1}{z_1}=B_1</math>. Notice how <math>OA_1B_1</math> is similar to <math>OA_2B_2</math>. Thus, the area of <math>A_1B_1B_2B_1</math> is <math>(k)(OA_2B_2)</math> for some constant <math>k</math>, and <math>OA_2B_2 = </math> | Because <math>z^2 - cz + 10 = 0</math>, notice that <math>|z_1||z_2|=|10|=10</math>. Furthermore, note that because <math>c</math> is real, <math>z_2=\bar z_1</math>. Thus, <math>\frac{1}{z_1}=\frac{\bar z_1}{z_1\cdot{\bar z_1}}=\frac{z_2}{|z_1|^2}=\frac{z_2}{100}</math>. Similarly, <math>\frac{1}{z_2}=\frac{z_1}{100}</math>. On the complex coordinate plane, let <math>z_1=A_2</math>, <math>z_2=B_2</math>,<math>\frac{1}{z_2}=A_1</math>, <math>\frac{1}{z_1}=B_1</math>. Notice how <math>OA_1B_1</math> is similar to <math>OA_2B_2</math>. Thus, the area of <math>A_1B_1B_2B_1</math> is <math>(k)(OA_2B_2)</math> for some constant <math>k</math>, and <math>OA_2B_2 = </math> | ||
(In progress) | (In progress) |
Revision as of 13:32, 3 September 2023
Contents
Problem
Let be a real number, and let and be the two complex numbers satisfying the equation . Points , , , and are the vertices of (convex) quadrilateral in the complex plane. When the area of obtains its maximum possible value, is closest to which of the following?
Solution 1
Because is real, . We have where the first equality follows from Vieta's formula.
Thus, .
We have where the first equality follows from Vieta's formula.
Thus, .
We have where the second equality follows from Vieta's formula.
We have where the second equality follows from Vieta's formula.
Therefore, where the inequality follows from the AM-GM inequality, and it is augmented to an equality if and only if . Thus, .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 2 (Incomplete)
Because , notice that . Furthermore, note that because is real, . Thus, . Similarly, . On the complex coordinate plane, let , ,, . Notice how is similar to . Thus, the area of is for some constant , and (In progress)
Solution 3 (Trapezoid)
Since , which is the sum of roots and , is real, .
Let . Then . Note that the product of the roots is by Vieta's, so .
Thus, . With the same process, .
So, our four points are and . WLOG let be in the first quadrant and graph these four points on the complex plane. Notice how quadrilateral Q is a trapezoid with the real axis as its axis of symmetry. It has a short base with endpoints and , so its length is . Likewise, its long base has endpoints and , so its length is .
The height, which is the distance between the two lines, is the difference between the real values of the two bases .
Plugging these into the area formula for a trapezoid, we are trying to maximize . Thus, the only thing we need to maximize is .
With the restriction that , is maximized when .
Remember, is the sum of the roots, so
~quacker88
Solution 4 (Fast)
Like the solutions above we can know that and .
Let where , then , , .
On the basis of symmetry, the area of is the difference between two isoceles triangles,so
. The inequality holds when , or .
Thus, .
~PluginL
Video Solution by Punxsutawney Phil
https://youtube.com/watch?v=bbMcdvlPcyA
Video Solution by Steven Chen
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.