Difference between revisions of "1997 AIME Problems/Problem 7"
m |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | A car travels due east at <math>\frac 23</math> mile per minute on a long, straight road. At the same time, a circular storm, whose radius is <math>51</math> miles, moves southeast at <math>\frac 12\sqrt{2}</math> mile per minute. At time <math>t=0</math>, the center of the storm is <math>110</math> miles due north of the car. At time <math>t=t_1</math> minutes, the car enters the storm circle, and at time <math>t=t_2</math> minutes, the car leaves the storm circle. Find <math>\frac 12(t_1+t_2)</math>. | ||
== Solution == | == Solution == | ||
+ | {{solution}} | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=1997|num-b=6|num-a=8}} |
Revision as of 14:32, 20 November 2007
Problem
A car travels due east at mile per minute on a long, straight road. At the same time, a circular storm, whose radius is miles, moves southeast at mile per minute. At time , the center of the storm is miles due north of the car. At time minutes, the car enters the storm circle, and at time minutes, the car leaves the storm circle. Find .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1997 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |