Difference between revisions of "1997 AIME Problems/Problem 6"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Point <math>B</math> is in the exterior of the regular <math>n</math>-sided polygon <math>A_1A_2\cdots A_n</math>, and <math>A_1A_2B</math> is an equilateral triangle. What is the largest value of <math>n</math> for which <math>A_1</math>, <math>A_n</math>, and <math>B</math> are consecutive vertices of a regular polygon?
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[1997 AIME Problems]]
+
{{AIME box|year=1997|num-b=5|num-a=7}}

Revision as of 14:32, 20 November 2007

Problem

Point $B$ is in the exterior of the regular $n$-sided polygon $A_1A_2\cdots A_n$, and $A_1A_2B$ is an equilateral triangle. What is the largest value of $n$ for which $A_1$, $A_n$, and $B$ are consecutive vertices of a regular polygon?

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

1997 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions