Difference between revisions of "2018 USAMO Problems/Problem 5"
m (→Solution: ; points) |
R00tsofunity (talk | contribs) |
||
Line 71: | Line 71: | ||
Now define <math>X</math> as the intersection of <math>BQ</math> and <math>DP</math>. From Pappus's theorem on <math>BFPDGQ</math> that <math>A,M,X</math> are collinear. It’s a well known property of Miquel points that <math>\angle EAX = 90</math>, so it follows that <math>MA \perp AE</math>, as desired. <math>\blacksquare</math> | Now define <math>X</math> as the intersection of <math>BQ</math> and <math>DP</math>. From Pappus's theorem on <math>BFPDGQ</math> that <math>A,M,X</math> are collinear. It’s a well known property of Miquel points that <math>\angle EAX = 90</math>, so it follows that <math>MA \perp AE</math>, as desired. <math>\blacksquare</math> | ||
~AopsUser101 | ~AopsUser101 | ||
+ | |||
+ | ==Video Solution by MOP 2024== | ||
+ | https://youtu.be/jORAIJDLzp4 | ||
+ | |||
+ | ~r00tsOfUnity |
Revision as of 16:09, 26 August 2023
Problem 5
In convex cyclic quadrilateral we know that lines and intersect at lines and intersect at and lines and intersect at Suppose that the circumcircle of intersects line at and , and the circumcircle of intersects line at and , where and are collinear in that order. Prove that if lines and intersect at , then
Solution
so are collinear. Furthermore, note that is cyclic because: Notice that since is the intersection of and , it is the Miquel point of .
Now define as the intersection of and . From Pappus's theorem on that are collinear. It’s a well known property of Miquel points that , so it follows that , as desired. ~AopsUser101
Video Solution by MOP 2024
~r00tsOfUnity