Difference between revisions of "2001 AIME II Problems/Problem 13"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
In quadrilateral <math>ABCD</math>, <math>\angle{BAD}\cong\angle{ADC}</math> and <math>\angle{ABD}\cong\angle{BCD}</math>, <math>AB = 8</math>, <math>BD = 10</math>, and <math>BC = 6</math>. The length <math>CD</math> may be written in the form <math>\frac {m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
  
 
== Solution ==
 
== Solution ==
 +
{{solution}}
  
 
== See also ==
 
== See also ==
* [[2001 AIME II Problems]]
+
{{AIME box|year=2001|n=II|num-b=12|num-a=14}}

Revision as of 23:45, 19 November 2007

Problem

In quadrilateral $ABCD$, $\angle{BAD}\cong\angle{ADC}$ and $\angle{ABD}\cong\angle{BCD}$, $AB = 8$, $BD = 10$, and $BC = 6$. The length $CD$ may be written in the form $\frac {m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2001 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions