Difference between revisions of "2003 AIME II Problems/Problem 14"
(→Solution 4 (No Trig)) |
(→Solution 4 (No Trig)) |
||
Line 67: | Line 67: | ||
==Solution 4 (No Trig)== | ==Solution 4 (No Trig)== | ||
+ | |||
+ | <asy> size(200); draw((0,0)--(10/sqrt(3),2)--(18/sqrt(3),6)--(10/sqrt(3),10)--(0,8)--(-8/sqrt(3),4)--cycle); dot((0,0));dot((10/sqrt(3),2));dot((18/sqrt(3),6));dot((10/sqrt(3),10));dot((0,8));dot((-8/sqrt(3),4)); label("$A (0,0)$",(0,0),SE);label("$B (b,2)$",(10/sqrt(3),2),SE);label("$C$",(18/sqrt(3),6),E);label("$D$",(10/sqrt(3),10),N);label("$E$",(0,8),NW);label("$F$",(-8/sqrt(3),4),W); xaxis("$x$");yaxis("$y$"); pair b=foot((10/sqrt(3),2),(0,0),(10,0)); pair f=foot((-8/sqrt(3),4),(0,0),(-10,0)); draw(b--(10/sqrt(3),2),dotted); draw(f--(-8/sqrt(3),4),dotted); label("$\theta$",(0,0),7*dir((0,0)--(10/sqrt(3),2)+(4*sqrt(21)/3,0))); </asy> | ||
First, we see that the y-coordinates of F, E, D, and C must be 4, 8, and 10, and 6, respectively, as in the previous solutions. We can draw a rectangle around the hexagon ABCDEF and use negative space to find the area of the hexagon. If we call the distance from the foot of the perpendiculars of B and F to A <math>x</math> and <math>z</math>, respectively, and the distance from the bottom left vertex of the rectangle to the foot of the perpendicular from B <math>y</math>. This tells us that the area of the entire rectangle is <math>10(x+y+z)</math>, since the opposite sides are parallel and thus the length of the rectangle is <math>4+4+2=10</math>. Then, | First, we see that the y-coordinates of F, E, D, and C must be 4, 8, and 10, and 6, respectively, as in the previous solutions. We can draw a rectangle around the hexagon ABCDEF and use negative space to find the area of the hexagon. If we call the distance from the foot of the perpendiculars of B and F to A <math>x</math> and <math>z</math>, respectively, and the distance from the bottom left vertex of the rectangle to the foot of the perpendicular from B <math>y</math>. This tells us that the area of the entire rectangle is <math>10(x+y+z)</math>, since the opposite sides are parallel and thus the length of the rectangle is <math>4+4+2=10</math>. Then, |
Revision as of 14:09, 18 August 2023
Contents
Problem
Let and be points on the coordinate plane. Let be a convex equilateral hexagon such that and the y-coordinates of its vertices are distinct elements of the set The area of the hexagon can be written in the form where and are positive integers and n is not divisible by the square of any prime. Find
Solution 1
The y-coordinate of must be . All other cases yield non-convex and/or degenerate hexagons, which violate the problem statement.
Letting , and knowing that , we can use rewrite using complex numbers: . We solve for and and find that and that .
The area of the hexagon can then be found as the sum of the areas of two congruent triangles ( and , with height and base ) and a parallelogram (, with height and base ).
.
Thus, .
Solution 2
From this image, we can see that the y-coordinate of F is 4, and from this, we can gather that the coordinates of E, D, and C, respectively, are 8, 10, and 6.
Let the angle between the -axis and segment be , as shown above. Thus, as , the angle between the -axis and segment is , so . Expanding, we have
Isolating we see that , or . Using the fact that , we have , or . Letting the side length of the hexagon be , we have . After simplification we find that that .
In particular, note that by the Pythagorean theorem, , hence . Also, if , then , hence and thus . Using similar methods (or symmetry), we determine that , , and . By the Shoelace theorem,
Hence the answer is .
Note
By symmetry the area of is twice the area of . Therefore, you only need to calculate the coordinates of , , and .
Solution 3
This is similar to solution 2 but faster and easier. First off we see that the y coordinate of F must be 4, the y coordinate of E must be 8, the y coordinate of D must be 10, and the y coordinate of C must be 6 (from the parallel sides of the hexagon). We then use the sine sum angle formula to find the x coordinate of B (lets call it ): . Now that we know we can find the x coordinate of F in multiple ways, including using the cosine sum angle formula or using the fact that triangle AFE is isosceles and AE is on the y axis. Either way, we find that the x coordinate of F is . Now, divide ABCDEF into two congruent triangles and a parallelogram: AFE, BCD, and ABDE. The areas of AFE and BCD are each . The area of ABDE is . The total area of the hexagon is
Solution 4 (No Trig)
First, we see that the y-coordinates of F, E, D, and C must be 4, 8, and 10, and 6, respectively, as in the previous solutions. We can draw a rectangle around the hexagon ABCDEF and use negative space to find the area of the hexagon. If we call the distance from the foot of the perpendiculars of B and F to A and , respectively, and the distance from the bottom left vertex of the rectangle to the foot of the perpendicular from B . This tells us that the area of the entire rectangle is , since the opposite sides are parallel and thus the length of the rectangle is . Then, if we find the area of the extra triangles and subtract, we find that the area of hexagon ABCDEF as . However, noticing that , the area of ABCDEF can also be expressed as . Now we just need to find . Since and degrees, . However, we can find AB by using the Pythagorean Theorem on either of the right triangles formed by dropping perpendiculars from B and F to the x-axis (let's call them ABX and AFY). From triangle ABX we have that , so . Since AB=AF, we can also form the equation . We can also find BF by dropping a perpendicular from B to line FY and using the Pythagorean Theorem on the right triangle formed. This gives us . Setting our two values of BF equal and substituting as and simplifying, we get the equation . Now we can use the quadratic formula to get that or , so . Plugging this value back into the equation , we get that . Now we get that is , so the area of the hexagon is , so the answer is
~ant08 and sky2025
Video Solution by Sal Khan
https://www.youtube.com/watch?v=Ec-BKdC8vOo&list=PLSQl0a2vh4HCtW1EiNlfW_YoNAA38D0l4&index=4 - AMBRIGGS
See also
2003 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.