Difference between revisions of "1968 AHSME Problems/Problem 5"

m (Solution)
m (See also)
Line 13: Line 13:
  
 
== See also ==
 
== See also ==
{{AHSME box|year=1968|num-b=4|num-a=6}}   
+
{{AHSME 35p box|year=1968|num-b=4|num-a=6}}   
  
 
[[Category: Introductory Algebra Problems]]
 
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 00:52, 16 August 2023

Problem

If $f(n)=\tfrac{1}{3} n(n+1)(n+2)$, then $f(r)-f(r-1)$ equals:

$\text{(A) } r(r+1)\quad \text{(B) } (r+1)(r+2)\quad \text{(C) } \tfrac{1}{3} r(r+1)\quad  \\ \text{(D) } \tfrac{1}{3} (r+1)(r+2)\quad \text{(E )} \tfrac{1}{3} r(r+1)(2r+1)$

Solution

$\fbox{A}$

See also

1968 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png