Difference between revisions of "Heron's Formula"
(category) |
(→Proof: \left and \right) |
||
Line 16: | Line 16: | ||
<math>=\frac{ab}{2}\sqrt{1-\cos^2 C}</math> | <math>=\frac{ab}{2}\sqrt{1-\cos^2 C}</math> | ||
− | <math>=\frac{ab}{2}\sqrt{1-(\frac{a^2+b^2-c^2}{2ab})^2}</math> | + | <math>=\frac{ab}{2}\sqrt{1-\left(\frac{a^2+b^2-c^2}{2ab}\right)^2}</math> |
− | <math>=\sqrt{\frac{a^2b^2}{4} | + | <math>=\sqrt{\frac{a^2b^2}{4}\left[1-\frac{(a^2+b^2-c^2)^2}{4a^2b^2}\right]}</math> |
<math>=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{16}}</math> | <math>=\sqrt{\frac{4a^2b^2-(a^2+b^2-c^2)^2}{16}}</math> | ||
Line 29: | Line 29: | ||
<math>=\sqrt{s(s-a)(s-b)(s-c)}</math> | <math>=\sqrt{s(s-a)(s-b)(s-c)}</math> | ||
− | |||
== See Also == | == See Also == |
Revision as of 16:51, 18 November 2007
Heron's formula (sometimes called Hero's formula) is a formula for finding the area of a triangle given only the three side lengths.
Definition
For any triangle with side lengths , the area can be found using the following formula:
where the semi-perimeter .
Proof