Difference between revisions of "2013 AMC 12B Problems/Problem 22"

(Undo revision 167433 by Jwelsh (talk))
(Tags: Blanking, Undo)
Line 1: Line 1:
 
+
 +
==Problem==
 +
 +
 +
Let <math>m>1</math> and <math>n>1</math> be integers. Suppose that the product of the solutions for <math>x</math> of the equation
 +
 +
 +
<cmath> 8(\log_n x)(\log_m x)-7\log_n x-6 \log_m x-2013 = 0 </cmath>
 +
 +
 +
is the smallest possible integer. What is <math>m+n</math>?
 +
 +
 +
 +
<math> \textbf{(A)}\ 12\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 272 </math>
 +
 +
 +
 +
 +
==Solution==
 +
 +
 +
Rearranging logs, the original equation becomes
 +
 +
 +
<cmath>\frac{8}{\log n \log m}(\log x)^2 - \left(\frac{7}{\log n}+\frac{6}{\log m}\right)\log x - 2013 = 0</cmath>
 +
 +
 +
 +
 +
By Vieta's Theorem, the sum of the possible values of <math>\log x</math> is <math>\frac{\frac{7}{\log n}+\frac{6}{\log m}}{\frac{8}{\log n \log m}} = \frac{7\log m + 6 \log n}{8} = \log \sqrt[8]{m^7n^6}</math>. But the sum of the possible values of <math>\log x</math> is the logarithm of the product of the possible values of <math>x</math>. Thus the product of the possible values of <math>x</math> is equal to <math>\sqrt[8]{m^7n^6}</math>.
 +
 +
 +
 +
 +
It remains to minimize the integer value of <math>\sqrt[8]{m^7n^6}</math>. Since <math>m, n>1</math>, we can check that <math>m = 2^2</math> and <math>n = 2^3</math> work. Thus the answer is <math>4+8 = \boxed{\textbf{(A)}\ 12}</math>.
 +
 +
 +
 +
 +
==Video Solution==
 +
 +
 +
For those who prefer a video solution: https://www.youtube.com/watch?v=vX0y9lRv9OM&t=312s
 +
 +
 +
 +
 +
== See also ==
 +
 +
 +
{{AMC12 box|year=2013|ab=B|num-b=21|num-a=23}}
 +
 +
 +
{{MAA Notice}}

Revision as of 21:19, 7 August 2023

Problem

− Let $m>1$ and $n>1$ be integers. Suppose that the product of the solutions for $x$ of the equation

\[8(\log_n x)(\log_m x)-7\log_n x-6 \log_m x-2013 = 0\]

− is the smallest possible integer. What is $m+n$?


$\textbf{(A)}\ 12\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 24\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 272$

Solution

− Rearranging logs, the original equation becomes

\[\frac{8}{\log n \log m}(\log x)^2 - \left(\frac{7}{\log n}+\frac{6}{\log m}\right)\log x - 2013 = 0\]

− By Vieta's Theorem, the sum of the possible values of $\log x$ is $\frac{\frac{7}{\log n}+\frac{6}{\log m}}{\frac{8}{\log n \log m}} = \frac{7\log m + 6 \log n}{8} = \log \sqrt[8]{m^7n^6}$. But the sum of the possible values of $\log x$ is the logarithm of the product of the possible values of $x$. Thus the product of the possible values of $x$ is equal to $\sqrt[8]{m^7n^6}$.

− It remains to minimize the integer value of $\sqrt[8]{m^7n^6}$. Since $m, n>1$, we can check that $m = 2^2$ and $n = 2^3$ work. Thus the answer is $4+8 = \boxed{\textbf{(A)}\ 12}$.

Video Solution

− For those who prefer a video solution: https://www.youtube.com/watch?v=vX0y9lRv9OM&t=312s

See also

2013 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

− The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png