Difference between revisions of "2023 IMO Problems/Problem 4"

(Created page with "==Problem 4== Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that <cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x...")
 
m (Problem 4)
Line 1: Line 1:
==Problem 4==
+
==Problem==
 
Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that
 
Let <math>x_1, x_2, \cdots , x_{2023}</math> be pairwise different positive real numbers such that
 
<cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x_2} +···+\frac1{x_n})}</cmath>
 
<cmath>a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x_2} +···+\frac1{x_n})}</cmath>
 
is an integer for every <math>n = 1,2,\cdots,2023</math>. Prove that <math>a_{2023} \ge 3034</math>.
 
is an integer for every <math>n = 1,2,\cdots,2023</math>. Prove that <math>a_{2023} \ge 3034</math>.
 +
 +
==Solution==

Revision as of 21:37, 13 July 2023

Problem

Let $x_1, x_2, \cdots , x_{2023}$ be pairwise different positive real numbers such that \[a_n = \sqrt{(x_1+x_2+···+x_n)(\frac1{x_1} + \frac1{x_2} +···+\frac1{x_n})}\] is an integer for every $n = 1,2,\cdots,2023$. Prove that $a_{2023} \ge 3034$.

Solution