Difference between revisions of "2015 AMC 10A Problems/Problem 7"
m (→Solution 1) |
(→Video Solution) |
||
Line 25: | Line 25: | ||
Subtract each of the terms by <math>10</math> to make the sequence <math>3 , 6 , 9,..., 60, 63</math>. Then divide the each term in the sequence by <math>3</math> to get <math>1, 2, 3,..., 20, 21</math>. Now it is clear to see that there are <math>21</math> terms in the sequence. | Subtract each of the terms by <math>10</math> to make the sequence <math>3 , 6 , 9,..., 60, 63</math>. Then divide the each term in the sequence by <math>3</math> to get <math>1, 2, 3,..., 20, 21</math>. Now it is clear to see that there are <math>21</math> terms in the sequence. | ||
<math>\boxed{\textbf{(B)}\ 21}</math>. | <math>\boxed{\textbf{(B)}\ 21}</math>. | ||
+ | |||
+ | ==Video Solution (CREATIVE THINKING)== | ||
+ | https://youtu.be/i7ItueJ6K8E | ||
+ | |||
+ | ~Education, the Study of Everything | ||
+ | |||
+ | |||
+ | |||
==Video Solution== | ==Video Solution== |
Latest revision as of 22:05, 26 June 2023
Contents
Problem
How many terms are in the arithmetic sequence , , , , , ?
Solution 1
, so the amount of terms in the sequence , , , , , is the same as in the sequence , , , , , .
In this sequence, the terms are the multiples of going up to , and there are multiples of in .
However, the number 0 must also be included, adding another multiple. So, the answer is .
Solution 2
Using the formula for arithmetic sequence's nth term, we see that .
Solution 3
Minus each of the terms by to make the the sequence .
.
Solution 4
Subtract each of the terms by to make the sequence . Then divide the each term in the sequence by to get . Now it is clear to see that there are terms in the sequence. .
Video Solution (CREATIVE THINKING)
~Education, the Study of Everything
Video Solution
~savannahsolver
See Also
2015 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.