Difference between revisions of "1985 AJHSME Problems/Problem 1"

(Solution 2 (Brute force))
(Solution 2)
Line 10: Line 10:
 
==Solution 2 ==
 
==Solution 2 ==
 
Multlipication gives:<cmath>\frac{15}{99}\cdot\frac{693}{105}=\frac{10395}{10395}=\boxed{\text{(A)}\ 1}.</cmath>
 
Multlipication gives:<cmath>\frac{15}{99}\cdot\frac{693}{105}=\frac{10395}{10395}=\boxed{\text{(A)}\ 1}.</cmath>
 +
 +
==Video Solution by BoundlessBrain!==
 +
https://youtu.be/-_r5GzafCUY
  
 
==See Also==
 
==See Also==

Revision as of 09:50, 24 June 2023

Problem

$\frac{3\times 5}{9\times 11}\times \frac{7\times 9\times 11}{3\times 5\times 7}=$

$\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)}\ \frac{1}{49} \qquad \text{(E)}\ 50$

Solution 1

By the associative property, we can rearrange the numbers in the numerator and the denominator. \[\frac{3}{3}\cdot \frac{5}{5}\cdot\frac{7}{7}\cdot\frac{9}{9}\cdot\frac{11}{11}=1\cdot1\cdot1\cdot1\cdot1=\boxed{\text{(A)} 1}\]

Solution 2

Multlipication gives:\[\frac{15}{99}\cdot\frac{693}{105}=\frac{10395}{10395}=\boxed{\text{(A)}\ 1}.\]

Video Solution by BoundlessBrain!

https://youtu.be/-_r5GzafCUY

See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png