Difference between revisions of "1992 AIME Problems/Problem 1"

(See also: AIME box)
(year)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
There are 8 [[fraction]]s which fit the conditions between 0 and 1: <math>\displaystyle \frac{1}{30},\frac{7}{30},\frac{11}{30},\frac{13}{30},\frac{17}{30},\frac{19}{30},\frac{23}{30},\frac{29}{30}</math>
+
There are 8 [[fraction]]s which fit the conditions between 0 and 1: <math>\frac{1}{30},\frac{7}{30},\frac{11}{30},\frac{13}{30},\frac{17}{30},\frac{19}{30},\frac{23}{30},\frac{29}{30}</math>
  
Their sum is 4. Note that there are also 8 terms between 1 and 2 which we can obtain them by adding 1 to each of our first 8 terms. For example, <math>\displaystyle 1+\frac{19}{30}=\frac{49}{30}.</math> Following this pattern, our answer is <math>4(10)+8(1+2+3+\cdots+9)=400.</math>
+
Their sum is 4. Note that there are also 8 terms between 1 and 2 which we can obtain them by adding 1 to each of our first 8 terms. For example, <math>1+\frac{19}{30}=\frac{49}{30}.</math> Following this pattern, our answer is <math>4(10)+8(1+2+3+\cdots+9)=400.</math>
  
{{AIME box|before=First question|num-a=2}}
+
{{AIME box|year=1992|before=First question|num-a=2}}

Revision as of 21:55, 11 November 2007

Problem

Find the sum of all positive rational numbers that are less than 10 and that have denominator 30 when written in lowest terms.

Solution

There are 8 fractions which fit the conditions between 0 and 1: $\frac{1}{30},\frac{7}{30},\frac{11}{30},\frac{13}{30},\frac{17}{30},\frac{19}{30},\frac{23}{30},\frac{29}{30}$

Their sum is 4. Note that there are also 8 terms between 1 and 2 which we can obtain them by adding 1 to each of our first 8 terms. For example, $1+\frac{19}{30}=\frac{49}{30}.$ Following this pattern, our answer is $4(10)+8(1+2+3+\cdots+9)=400.$

1992 AIME (ProblemsAnswer KeyResources)
Preceded by
First question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions