Difference between revisions of "2000 AIME II Problems/Problem 9"

m
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
The system of equations
+
Given that <math>z</math> is a complex number such that <math>z+\frac 1z=2\cos 3^\circ</math>, find the least integer that is greater than <math>z^{2000}+\frac 1{z^{2000}}</math>.
<center><math>\begin{eqnarray*}\log_{10}(2000xy) - (\log_{10}x)(\log_{10}y) & = & 4 \\
 
\log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\
 
\log_{10}(2000zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\
 
\end{eqnarray*}</math></center>
 
 
 
has two solutions <math>(x_{1},y_{1},z_{1})</math> and <math>(x_{2},y_{2},z_{2})</math>. Find <math>y_{1} + y_{2}</math>.
 
  
 
== Solution ==
 
== Solution ==

Revision as of 18:32, 11 November 2007

Problem

Given that $z$ is a complex number such that $z+\frac 1z=2\cos 3^\circ$, find the least integer that is greater than $z^{2000}+\frac 1{z^{2000}}$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2000 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions