Difference between revisions of "2014 AMC 10A Problems/Problem 25"
Isabelchen (talk | contribs) m (→Solution 2) |
m (→Solution 2) |
||
Line 29: | Line 29: | ||
The third power of <math>2</math> is between <math>4 \cdot 5^n</math> and <math>8 \cdot 5^n</math>, meaning that it can be between <math>5^n</math> and <math>5^{n+1}</math> or not. | The third power of <math>2</math> is between <math>4 \cdot 5^n</math> and <math>8 \cdot 5^n</math>, meaning that it can be between <math>5^n</math> and <math>5^{n+1}</math> or not. | ||
− | If there are only <math>2</math> power of <math>2</math>s between every consecutive powers of <math>5</math> up to <math>5^{867}</math>, there would be <math>867 | + | If there are only <math>2</math> power of <math>2</math>s between every consecutive powers of <math>5</math> up to <math>5^{867}</math>, there would be <math>867\cdot 2 = 1734</math> power of <math>2</math>s. However, there are <math>2013</math> powers of <math>2</math> before <math>5^{867}</math>, meaning the answer is <math>2013 - 1734 = \boxed{\textbf{(B)}279}</math>. |
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] | ~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen] |
Revision as of 15:06, 10 May 2023
- The following problem is from both the 2014 AMC 12A #22 and 2014 AMC 10A #25, so both problems redirect to this page.
Problem
The number is between
and
. How many pairs of integers
are there such that
and
Solution 1
Between any two consecutive powers of there are either
or
powers of
(because
). Consider the intervals
. We want the number of intervals with
powers of
.
From the given that , we know that these
intervals together have
powers of
. Let
of them have
powers of
and
of them have
powers of
. Thus we have the system
from which we get
, so the answer is
.
Solution 2
The problem is asking for between how many consecutive powers of are there
power of
s
There can be either or
powers of
between any two consecutive powers of
,
and
.
The first power of is between
and
.
The second power of is between
and
.
The third power of is between
and
, meaning that it can be between
and
or not.
If there are only power of
s between every consecutive powers of
up to
, there would be
power of
s. However, there are
powers of
before
, meaning the answer is
.
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2014amc10a/379
See Also
2014 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2014 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.