Difference between revisions of "2023 USAMO Problems/Problem 3"

(create problem page)
 
(Solution: add MAA notice)
Line 3: Line 3:
 
== Solution ==
 
== Solution ==
 
{{Solution}}
 
{{Solution}}
 +
 +
{{MAA Notice}}

Revision as of 18:57, 9 May 2023

Problem

Consider an $n$-by-$n$ board of unit squares for some odd positive integer $n$. We say that a collection $C$ of identical dominoes is a maximal grid-aligned configuration on the board if $C$ consists of $(n^2-1)/2$ dominoes where each domino covers exactly two neighboring squares and the dominoes don't overlap: $C$ then covers all but one square on the board. We are allowed to slide (but not rotate) a domino on the board to cover the uncovered square, resulting in a new maximal grid-aligned configuration with another square uncovered. Let $k(C)$ be the number of distinct maximal grid-aligned configurations obtainable from $C$ by repeatedly sliding dominoes. Find the maximum value of $k(C)$ as a function of $n$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png