Difference between revisions of "1991 AHSME Problems/Problem 30"
Isabelchen (talk | contribs) (→Solution 2) |
Isabelchen (talk | contribs) (→Solution 2) |
||
Line 15: | Line 15: | ||
As <math>n(A)+n(B)+n(C)=n(A \cup B \cup C)</math>, <math>2^{|A|}+2^{|B|}+2^{|C|}=2^{|A \cup B \cup C|}</math>, <math>2^{100}+2^{100}+2^{|C|}=2^{|A \cup B \cup C|}</math> | As <math>n(A)+n(B)+n(C)=n(A \cup B \cup C)</math>, <math>2^{|A|}+2^{|B|}+2^{|C|}=2^{|A \cup B \cup C|}</math>, <math>2^{100}+2^{100}+2^{|C|}=2^{|A \cup B \cup C|}</math> | ||
− | <math>2^{101}+2^{|C|}=2^{|A \cup B \cup C|}</math> as <math>|C|</math> and <math>|A \cup B \cup C|</math> are integers, <math>|C|</math> | + | <math>2^{101}+2^{|C|}=2^{|A \cup B \cup C|}</math> as <math>|C|</math> and <math>|A \cup B \cup C|</math> are integers, <math>|C|=101</math> and <math>|A \cup B \cup C| = 102</math> |
− | By [[Principle of Inclusion-Exclusion]], <math>|A \cup B| = |A| + |B| - |A \cap B| = 200 - A \cap B|</math> | + | By [[Principle of Inclusion-Exclusion]], <math>|A \cup B| = |A| + |B| - |A \cap B| = 200 - |A \cap B|</math> |
− | <math>|A| | + | <math>|A|=|B| \le |A \cup B| \le |A \cup B \cup C|</math>, <math>100 \le |A \cup B| \le 102</math>, <math>98 \le |A \cap B| \le 100</math> |
+ | |||
+ | By [[Principle of Inclusion-Exclusion]], <math>|A \cup C| = |A| + |C| - |A \cap C| = 200 - |A \cap C|</math> | ||
+ | |||
+ | <math>|C| \le |A \cup C| \le |A \cup B \cup C|</math>, <math>101 \le |A \cup C| \le 102</math>, <math>99 \le |A \cap B| \le 100</math> | ||
+ | |||
+ | By [[Principle of Inclusion-Exclusion]], <math>|B \cup C| = |B| + |C| - |B \cap C| = 200 - |B \cap C|</math> | ||
+ | |||
+ | <math>|C| \le |A \cup C| \le |A \cup B \cup C|</math>, <math>101 \le |B \cup C| \le 102</math>, <math>99 \le |A \cap B| \le 100</math> | ||
== See also == | == See also == |
Revision as of 10:13, 6 May 2023
Contents
Problem
For any set , let denote the number of elements in , and let be the number of subsets of , including the empty set and the set itself. If , , and are sets for which and , then what is the minimum possible value of ?
Solution 1
, so and are integral powers of and . Let , , and where Thus, the minimum value of is
Solution 2
As ,
As , ,
as and are integers, and
By Principle of Inclusion-Exclusion,
, ,
By Principle of Inclusion-Exclusion,
, ,
By Principle of Inclusion-Exclusion,
, ,
See also
1991 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 29 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.