Difference between revisions of "Euclid 2020/Problem 6"

 
Line 1: Line 1:
 
(a) Suppose that the function <math>g</math> satisfies <math>g(x) = 2x - 4</math> for all real numbers <math>x</math> and
 
(a) Suppose that the function <math>g</math> satisfies <math>g(x) = 2x - 4</math> for all real numbers <math>x</math> and
 
that <math>g^-1</math> is the inverse function of <math>g</math>. Suppose that the function <math>f</math> satisfies
 
that <math>g^-1</math> is the inverse function of <math>g</math>. Suppose that the function <math>f</math> satisfies
<math>g(f(g^-1(x)))</math> = 2x^2 + 16x + 26<math> for all real numbers </math>x<math>. What is the value of
+
<math>g(f(g^-1(x))) = 2x^2 + 16x + 26</math> for all real numbers <math>x</math>. What is the value of
</math>f(\pi)<math>?
+
<math>f(\pi)</math>?
(b) Determine all pairs of angles </math>(x; y)<math> with </math>0<math> </math>\le x<math> </math><<math> </math>180<math>  and </math>0<math> </math>\le y<math> </math><<math> </math>180<math> that
+
(b) Determine all pairs of angles <math>(x; y)</math> with <math>0 \le x < 180</math>  and <math>0 \le y < 180 that
 
satisfy the following system of equations:
 
satisfy the following system of equations:
 
</math>log_2(sin x*cos y)<math> = -3/2</math>
 
</math>log_2(sin x*cos y)<math> = -3/2</math>
 
<math>log_2(sin x/cosy)</math> = 1/2$
 
<math>log_2(sin x/cosy)</math> = 1/2$

Latest revision as of 03:30, 31 March 2023

(a) Suppose that the function $g$ satisfies $g(x) = 2x - 4$ for all real numbers $x$ and that $g^-1$ is the inverse function of $g$. Suppose that the function $f$ satisfies $g(f(g^-1(x))) = 2x^2 + 16x + 26$ for all real numbers $x$. What is the value of $f(\pi)$? (b) Determine all pairs of angles $(x; y)$ with $0 \le x < 180$  and $0 \le y < 180 that satisfy the following system of equations:$ (Error compiling LaTeX. Unknown error_msg)log_2(sin x*cos y)$= -3/2$ $log_2(sin x/cosy)$ = 1/2$