Difference between revisions of "Unclassified Questions"

(2021 GMC 10B Problems/Problem 19)
(2021 GMC 10B Problems/Problem 19)
Line 3: Line 3:
 
Find the remainder when <math>3^{18}-1</math> is divided by <math>811</math>.
 
Find the remainder when <math>3^{18}-1</math> is divided by <math>811</math>.
  
<math>\textrm{(A)} 111\qquad\textrm{(B)} 142\qquad\textrm{(C)} 157\qquad\textrm{(D)} 221\qquad\textrm{(E)} </math>229<math>
+
<math>\textrm{(A)} 111\qquad\textrm{(B)} 142\qquad\textrm{(C)} 157\qquad\textrm{(D)} 221\qquad\textrm{(E)} 229</math>
  
 
===Solution===
 
===Solution===
 
'''Submitted by BinouTheGuineaPig''' | ''A step-by-step solution''
 
'''Submitted by BinouTheGuineaPig''' | ''A step-by-step solution''
  
</math>3^{18}-1=(3^6\cdot3^6\cdot3^6)-1<math>
+
<math>3^{18}-1=(3^6\cdot3^6\cdot3^6)-1</math>
  
</math>\qquad\qquad =(729\cdot729\cdot729)-1<math>
+
<math>\qquad\qquad =(729\cdot729\cdot729)-1</math>
  
</math>\qquad\qquad\equiv (-82\cdot-82\cdot-82)-1\mod811<math>
+
<math>\qquad\qquad\equiv (-82\cdot-82\cdot-82)-1\mod811</math>
  
</math>\qquad\qquad\equiv -(2^3)(41^3)-1\mod811<math>
+
<math>\qquad\qquad\equiv -(2^3)(41^3)-1\mod811</math>
  
</math>\qquad\qquad\equiv -(8)(41)(41^2)-1\mod811<math>
+
<math>\qquad\qquad\equiv -(8)(41)(41^2)-1\mod811</math>
  
</math>\qquad\qquad\equiv -(328)(1681)-1\mod811<math>
+
<math>\qquad\qquad\equiv -(328)(1681)-1\mod811</math>
  
</math>\qquad\qquad\equiv -(-483)(59)-1\mod811<math>
+
<math>\qquad\qquad\equiv -(-483)(59)-1\mod811</math>
  
</math>\qquad\qquad\equiv 28496\mod811<math>
+
<math>\qquad\qquad\equiv 28496\mod811</math>
  
</math>\qquad\qquad\equiv 111\mod811$
+
<math>\qquad\qquad\equiv 111\mod811</math>

Revision as of 23:04, 24 March 2023

2021 GMC 10B Problems/Problem 19

Find the remainder when $3^{18}-1$ is divided by $811$.

$\textrm{(A)} 111\qquad\textrm{(B)} 142\qquad\textrm{(C)} 157\qquad\textrm{(D)} 221\qquad\textrm{(E)} 229$

Solution

Submitted by BinouTheGuineaPig | A step-by-step solution

$3^{18}-1=(3^6\cdot3^6\cdot3^6)-1$

$\qquad\qquad =(729\cdot729\cdot729)-1$

$\qquad\qquad\equiv (-82\cdot-82\cdot-82)-1\mod811$

$\qquad\qquad\equiv -(2^3)(41^3)-1\mod811$

$\qquad\qquad\equiv -(8)(41)(41^2)-1\mod811$

$\qquad\qquad\equiv -(328)(1681)-1\mod811$

$\qquad\qquad\equiv -(-483)(59)-1\mod811$

$\qquad\qquad\equiv 28496\mod811$

$\qquad\qquad\equiv 111\mod811$