Difference between revisions of "1975 AHSME Problems/Problem 27"
(→Problem) |
Megaboy6679 (talk | contribs) (→Solution 2(Faster)) |
||
Line 20: | Line 20: | ||
==Solution 2(Faster)== | ==Solution 2(Faster)== | ||
We know that <math>p^3+q^3+r^3=(p+q+r)(p^2+q^2+r^2-pq-qr-pr)+3pqr</math>. By Vieta's formulas, <math>p+q+r=1</math>,<math>pqr=2</math>, and <math>pq+qr+pr=1</math>. | We know that <math>p^3+q^3+r^3=(p+q+r)(p^2+q^2+r^2-pq-qr-pr)+3pqr</math>. By Vieta's formulas, <math>p+q+r=1</math>,<math>pqr=2</math>, and <math>pq+qr+pr=1</math>. | ||
− | So if we can find <math>p^2+q^2+r^2</math>, we are done. Notice that <math>(p+q+r)^2=p^2+q^2+r^2+2pq+2qr+2pr</math>, so <math>p^2+q^2+r^2=(p+q+r)^2-2(pq+qr+pr)=1^2-2\cdot1=-1</math>, which means that <math>p^3+q^3+r^3=1\cdot-2+3\cdot2=\boxed{\text{(E)}4}</math> | + | So if we can find <math>p^2+q^2+r^2</math>, we are done. Notice that <math>(p+q+r)^2=p^2+q^2+r^2+2pq+2qr+2pr</math>, so <math>p^2+q^2+r^2=(p+q+r)^2-2(pq+qr+pr)=1^2-2\cdot1=-1</math>, which means that <math>p^3+q^3+r^3=1\cdot-2+3\cdot2=\boxed{\text{(E) }4}</math> |
~pfalcon | ~pfalcon |
Revision as of 23:04, 18 March 2023
Problem
If and are distinct roots of , then equals
Solution 1
If is a root of , then , or Similarly, , and , so
By Vieta's formulas, , , and . Squaring the equation , we get Subtracting , we get
Therefore, . The answer is (E).
Solution 2(Faster)
We know that . By Vieta's formulas, ,, and . So if we can find , we are done. Notice that , so , which means that
~pfalcon