Difference between revisions of "2016 Mathcounts State Sprint Problems"
Line 1: | Line 1: | ||
− | Note to all: all figures can be found [https://doc-08-cc-prod-01-apps-viewer.googleusercontent.com/viewer2/prod-01/pdf/5iqh8eq79rq1gs669bd1asn9cnc7dm1e/h5dvatqbt5avffk4aoilojf7nfd5rgg6/1678337775000/3/110546807795006377675/APznzaYEZclf5wMNutxvC1Y1U2GbKn1qDwEivEdyA0BlZOAyXqh0HMA-KPr5ndXc2tqUBD6yv7m-H4DcZ02JSrBEyOtxv5roJcT5jSmphSckwNWdLwRBCTAQmE4pKEx-kyCL8alcScXfixSmLpHl_KvFbrYzXf5WeLIREUAzNSfkzyKorMzu7V7CjhjRM5Qn_SI6xKm1cTbXVDn7sRIp9-4IsLKqc8x3Ecvnifrsqzur7Gtj3WnmNRNBQWsH9GN5550tgjh7qqARZa7B2bQ8CfjoXGe7PZN5h3qYXZ6LOreGvdOlt0tL6lMYXJEOdYv0fzlx-kOpoP6JJAisAdy23mKZZCGIGU_feUePztOco3QuUmNf3fIodik=?authuser=0&nonce=ial8h6qa099ic&user=110546807795006377675&hash=gkkuvej9jksp1bf0oq2dbuur2bk0nbhp| here] (Don't have time. If you can do an | + | Note to all: all figures can be found [https://doc-08-cc-prod-01-apps-viewer.googleusercontent.com/viewer2/prod-01/pdf/5iqh8eq79rq1gs669bd1asn9cnc7dm1e/h5dvatqbt5avffk4aoilojf7nfd5rgg6/1678337775000/3/110546807795006377675/APznzaYEZclf5wMNutxvC1Y1U2GbKn1qDwEivEdyA0BlZOAyXqh0HMA-KPr5ndXc2tqUBD6yv7m-H4DcZ02JSrBEyOtxv5roJcT5jSmphSckwNWdLwRBCTAQmE4pKEx-kyCL8alcScXfixSmLpHl_KvFbrYzXf5WeLIREUAzNSfkzyKorMzu7V7CjhjRM5Qn_SI6xKm1cTbXVDn7sRIp9-4IsLKqc8x3Ecvnifrsqzur7Gtj3WnmNRNBQWsH9GN5550tgjh7qqARZa7B2bQ8CfjoXGe7PZN5h3qYXZ6LOreGvdOlt0tL6lMYXJEOdYv0fzlx-kOpoP6JJAisAdy23mKZZCGIGU_feUePztOco3QuUmNf3fIodik=?authuser=0&nonce=ial8h6qa099ic&user=110546807795006377675&hash=gkkuvej9jksp1bf0oq2dbuur2bk0nbhp| here] (Don't have time. If you can do an asymptote, please do) |
− | |||
− | |||
__TOC__ | __TOC__ | ||
== Problem 1 == | == Problem 1 == | ||
Let <math>a@ b</math> = <math>\frac{a}{2a+b}</math>. What is the value of <math>5@3</math>? Express your answer as a common fraction. | Let <math>a@ b</math> = <math>\frac{a}{2a+b}</math>. What is the value of <math>5@3</math>? Express your answer as a common fraction. | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 1 | Solution]] | ||
== Problem 2 == | == Problem 2 == | ||
How many rectangles of any size are in the grid shown here? | How many rectangles of any size are in the grid shown here? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 2 | Solution]] | ||
== Problem 3 == | == Problem 3 == | ||
Given 7x + 13 = 328, what is the value of 14x + 13? | Given 7x + 13 = 328, what is the value of 14x + 13? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 3 | Solution]] | ||
== Problem 4 == | == Problem 4 == | ||
What is the median of the positive perfect squares less than 250? | What is the median of the positive perfect squares less than 250? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 4 | Solution]] | ||
+ | |||
+ | == Problem 5 == | ||
If <math>\frac{x+5}{x-2}=\frac{2}{3}</math>, what is the value of x? | If <math>\frac{x+5}{x-2}=\frac{2}{3}</math>, what is the value of x? | ||
− | == Problem | + | [[2016 Mathcounts State Sprint Problems/Problem 5 | Solution]] |
+ | |||
+ | == Problem 6 == | ||
In rectangle TUVW, shown here, WX = 4 units, XY = 2 units, YV = 1 unit and | In rectangle TUVW, shown here, WX = 4 units, XY = 2 units, YV = 1 unit and | ||
− | UV = 6 units. What is the absolute | + | UV = 6 units. What is the absolute difference between the areas of triangles <math>TXZ</math> |
− | and <math> | + | and <math>UYZ</math>? |
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 6 | Solution]] | ||
− | == Problem | + | == Problem 7 == |
A bag contains 4 blue, 5 green and 3 red marbles. How many green marbles | A bag contains 4 blue, 5 green and 3 red marbles. How many green marbles | ||
must be added to the bag so that 75 percent of the marbles are green? | must be added to the bag so that 75 percent of the marbles are green? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 7 | Solution]] | ||
+ | |||
+ | == Problem 8 == | ||
MD rides a three wheeled motorcycle called a trike. MD has a spare tire for his | MD rides a three wheeled motorcycle called a trike. MD has a spare tire for his | ||
trike and wants to occasionally swap out his tires so that all four will | trike and wants to occasionally swap out his tires so that all four will | ||
have been used for the same distance as he drives 25,000 miles. | have been used for the same distance as he drives 25,000 miles. | ||
How many miles will each tire drive? | How many miles will each tire drive? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 8 | Solution]] | ||
+ | |||
+ | == Problem 9 == | ||
Lucy and her father share the same birthday. When Lucy turned 15 her father | Lucy and her father share the same birthday. When Lucy turned 15 her father | ||
turned 3 times her age. On their birthday this year, Lucy’s father turned exactly | turned 3 times her age. On their birthday this year, Lucy’s father turned exactly | ||
twice as old as she turned. How old did Lucy turn this year? | twice as old as she turned. How old did Lucy turn this year? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 9 | Solution]] | ||
+ | |||
+ | == Problem 10 == | ||
The sum of three distinct 2-digit primes is 53. Two of the primes have a units | The sum of three distinct 2-digit primes is 53. Two of the primes have a units | ||
digit of 3, and the other prime has a units digit of 7. What is the greatest of the | digit of 3, and the other prime has a units digit of 7. What is the greatest of the | ||
three primes? | three primes? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 10 | Solution]] | ||
+ | |||
+ | == Problem 11 == | ||
Ross and Max have a combined weight of 184 pounds. Ross and Seth have a | Ross and Max have a combined weight of 184 pounds. Ross and Seth have a | ||
combined weight of 197 pounds. Max and Seth have a combined weight of | combined weight of 197 pounds. Max and Seth have a combined weight of | ||
189 pounds. How many pounds does Ross weigh? | 189 pounds. How many pounds does Ross weigh? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 11 | Solution]] | ||
+ | |||
+ | == Problem 12 == | ||
What is the least possible denominator of a positive rational number whose | What is the least possible denominator of a positive rational number whose | ||
− | repeating decimal representation is 0.AB , where A and B are distinct digits? | + | repeating decimal representation is <math>0.\overline{AB}</math>, where A and B are distinct digits? |
− | + | ||
− | + | [[2016 Mathcounts State Sprint Problems/Problem 12 | Solution]] | |
− | + | ||
− | + | == Problem 13 == | |
− | + | A taxi charges \$3.25 for the first mile and \$0.45 for each additional | |
− | A taxi charges | + | <math>\frac{1}{4}</math> mile thereafter. At most, how many miles can a passenger travel |
− | 1 | + | using \$13.60? Express your answer as a mixed number. |
− | 4 | + | |
− | + | [[2016 Mathcounts State Sprint Problems/Problem 13 | Solution]] | |
− | thereafter. At most, how many miles can a passenger travel using $13.60? | + | |
− | Express your answer as a mixed number. | + | == Problem 14 == |
− | Kali is mixing soil for a container garden. If she mixes 2 | + | Kali is mixing soil for a container garden. If she mixes 2 <math>m^3</math> of soil |
− | + | containing 35% sand with 6 <math>m^3</math> of soil containing 15% sand, what percent | |
− | 35% sand with 6 | + | of the new mixture is sand? |
− | + | ||
− | mixture is sand? | + | [[2016 Mathcounts State Sprint Problems/Problem 14 | Solution]] |
+ | |||
+ | == Problem 15 == | ||
Alex can run a complete lap around the school track in 1 minute, 28 seconds, | Alex can run a complete lap around the school track in 1 minute, 28 seconds, | ||
and Becky can run a complete lap in 1 minute, 16 seconds. If they begin running | and Becky can run a complete lap in 1 minute, 16 seconds. If they begin running | ||
at the same time and location, how many complete laps will Alex have run when | at the same time and location, how many complete laps will Alex have run when | ||
− | Becky passes him for the | + | Becky passes him for the first time? |
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 15 | Solution]] | ||
+ | |||
+ | == Problem 16 == | ||
The Beavers, Ducks, Platypuses and Narwhals are the only four basketball | The Beavers, Ducks, Platypuses and Narwhals are the only four basketball | ||
teams remaining in a single-elimination tournament. Each round consists of the | teams remaining in a single-elimination tournament. Each round consists of the | ||
Line 67: | Line 105: | ||
Beavers will play each other in one of the two rounds? Express | Beavers will play each other in one of the two rounds? Express | ||
your answer as a common fraction. | your answer as a common fraction. | ||
− | A function f (x) is | + | |
− | two positive integers a and b and | + | [[2016 Mathcounts State Sprint Problems/Problem 16 | Solution]] |
+ | |||
+ | == Problem 17 == | ||
+ | A function f (x) is defined for all positive integers. If <math>f(a)+f(b)=f(ab)</math> | ||
+ | for any two positive integers a and b and <math>f(3)=5</math>, what is <math>f(27)</math>? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 17 | Solution]] | ||
+ | |||
+ | == Problem 18 == | ||
Rectangle ABCD is shown with AB = 6 units and | Rectangle ABCD is shown with AB = 6 units and | ||
AD = 5 units. If AC is extended to point E such that | AD = 5 units. If AC is extended to point E such that | ||
AC is congruent to CE, what is the length of DE? | AC is congruent to CE, what is the length of DE? | ||
− | + | ||
− | + | [[2016 Mathcounts State Sprint Problems/Problem 18 | Solution]] | |
− | + | ||
− | + | == Problem 19 == | |
− | |||
− | |||
− | |||
− | |||
The digits of a 3-digit integer are reversed to form a new integer of greater | The digits of a 3-digit integer are reversed to form a new integer of greater | ||
value. The product of this new integer and the original integer is 91,567. What is | value. The product of this new integer and the original integer is 91,567. What is | ||
the new integer? | the new integer? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 19 | Solution]] | ||
+ | |||
+ | == Problem 20 == | ||
Diagonal XZ of rectangle WXYZ is divided into three segments each of length | Diagonal XZ of rectangle WXYZ is divided into three segments each of length | ||
2 units by points M and N as shown. Segments MW and NY are parallel and are | 2 units by points M and N as shown. Segments MW and NY are parallel and are | ||
− | both perpendicular to XZ. What is the area of WXYZ? | + | both perpendicular to XZ. What is the area of WXYZ? Express your answer in |
− | Express your answer in simplest radical form. | + | simplest radical form. |
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 20 | Solution]] | ||
+ | |||
+ | == Problem 21 == | ||
A spinner is divided into 5 sectors as shown. Each of the central | A spinner is divided into 5 sectors as shown. Each of the central | ||
angles of sectors 1 through 3 measures 60° while each of the | angles of sectors 1 through 3 measures 60° while each of the | ||
Line 92: | Line 142: | ||
spun twice, what is the probability that at least one spin lands | spun twice, what is the probability that at least one spin lands | ||
on an even number? Express your answer as a common fraction. | on an even number? Express your answer as a common fraction. | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 21 | Solution]] | ||
+ | |||
+ | == Problem 22 == | ||
The student council at Round Junior High School has eight members who meet | The student council at Round Junior High School has eight members who meet | ||
− | at a circular table. If the four | + | at a circular table. If the four oficers must sit together in any order, how many |
distinguishable circular seating orders are possible? Two seating orders are | distinguishable circular seating orders are possible? Two seating orders are | ||
distinguishable if one is not a rotation of the other. | distinguishable if one is not a rotation of the other. | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 22 | Solution]] | ||
+ | |||
+ | == Problem 23 == | ||
Initially, a chip is placed in the upper-left corner square of a 15 × 10 grid of | Initially, a chip is placed in the upper-left corner square of a 15 × 10 grid of | ||
squares as shown. The chip can move in an L-shaped pattern, moving two | squares as shown. The chip can move in an L-shaped pattern, moving two | ||
Line 103: | Line 161: | ||
number of L-shaped moves needed to move the chip | number of L-shaped moves needed to move the chip | ||
from its initial location to the square marked “X”? | from its initial location to the square marked “X”? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 23 | Solution]] | ||
+ | |||
+ | == Problem 24 == | ||
On line segment AE, shown here, B is the midpoint of segment AC and D is the | On line segment AE, shown here, B is the midpoint of segment AC and D is the | ||
midpoint of segment CE. If AD = 17 units and BE = 21 units, what is the length | midpoint of segment CE. If AD = 17 units and BE = 21 units, what is the length | ||
of segment AE? Express your answer as a common fraction. | of segment AE? Express your answer as a common fraction. | ||
− | + | ||
− | + | [[2016 Mathcounts State Sprint Problems/Problem 24 | Solution]] | |
− | + | ||
− | + | == Problem 25 == | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
There are twelve different mixed numbers that can be created by substituting | There are twelve different mixed numbers that can be created by substituting | ||
− | three of the numbers 1, 2, 3 and 5 for a, b and c in the expression a | + | three of the numbers 1, 2, 3 and 5 for a, b and c in the expression <math>a\frac{b}{c}</math>, |
− | b | + | where <math>b<c</math>. What is the mean of these twelve mixed numbers? Express your answer as |
− | c | ||
− | |||
− | b < c. What is the mean of these twelve mixed numbers? Express your answer as | ||
a mixed number. | a mixed number. | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 25 | Solution]] | ||
+ | |||
+ | == Problem 26 == | ||
If 738 consecutive integers are added together, where the 178th number in the | If 738 consecutive integers are added together, where the 178th number in the | ||
− | sequence is | + | sequence is <math>4256815</math>, what is the remainder when this sum is divided by 6? |
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 26 | Solution]] | ||
+ | |||
+ | == Problem 27 == | ||
Consider a coordinate plane with the points A(−5, 0) and B(5, 0). For how | Consider a coordinate plane with the points A(−5, 0) and B(5, 0). For how | ||
many points X in the plane is it true that XA and XB are both positive integer | many points X in the plane is it true that XA and XB are both positive integer | ||
distances, each less than or equal to 10? | distances, each less than or equal to 10? | ||
− | The function | + | |
− | all positive integers. If the range of f contains two numbers that | + | [[2016 Mathcounts State Sprint Problems/Problem 27 | Solution]] |
− | what is the least possible value of | + | |
+ | == Problem 28 == | ||
+ | The function <math>f(n)=a\cdot n!+b</math>, where <math>a</math> and <math>b</math> are positive integers, is defined for | ||
+ | all positive integers. If the range of f contains two numbers that differ by 20, | ||
+ | what is the least possible value of <math>f(1)</math>? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 28 | Solution]] | ||
+ | |||
+ | == Problem 29 == | ||
In the list of numbers 1, 2, …, 9999, the digits 0 through 9 are replaced with the | In the list of numbers 1, 2, …, 9999, the digits 0 through 9 are replaced with the | ||
letters A through J, respectively. For example, the number 501 is replaced by the | letters A through J, respectively. For example, the number 501 is replaced by the | ||
Line 142: | Line 205: | ||
9999 strings is sorted alphabetically. How many strings appear before “CHAI” | 9999 strings is sorted alphabetically. How many strings appear before “CHAI” | ||
in this list? | in this list? | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 29 | Solution]] | ||
+ | |||
+ | == Problem 30 == | ||
A 12-sided game die has the shape of a hexagonal bipyramid, which consists of | A 12-sided game die has the shape of a hexagonal bipyramid, which consists of | ||
two pyramids, each with a regular hexagonal base of side length 1 cm and with | two pyramids, each with a regular hexagonal base of side length 1 cm and with | ||
Line 147: | Line 214: | ||
and lands on one of its triangular faces, how high of the ground is the opposite | and lands on one of its triangular faces, how high of the ground is the opposite | ||
face? Express your answer as a common fraction in simplest radical form. | face? Express your answer as a common fraction in simplest radical form. | ||
+ | |||
+ | [[2016 Mathcounts State Sprint Problems/Problem 30 | Solution]] |
Revision as of 19:58, 12 March 2023
Note to all: all figures can be found here (Don't have time. If you can do an asymptote, please do)
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 Problem 26
- 27 Problem 27
- 28 Problem 28
- 29 Problem 29
- 30 Problem 30
Problem 1
Let = . What is the value of ? Express your answer as a common fraction.
Problem 2
How many rectangles of any size are in the grid shown here?
Problem 3
Given 7x + 13 = 328, what is the value of 14x + 13?
Problem 4
What is the median of the positive perfect squares less than 250?
Problem 5
If , what is the value of x?
Problem 6
In rectangle TUVW, shown here, WX = 4 units, XY = 2 units, YV = 1 unit and UV = 6 units. What is the absolute difference between the areas of triangles and ?
Problem 7
A bag contains 4 blue, 5 green and 3 red marbles. How many green marbles must be added to the bag so that 75 percent of the marbles are green?
Problem 8
MD rides a three wheeled motorcycle called a trike. MD has a spare tire for his trike and wants to occasionally swap out his tires so that all four will have been used for the same distance as he drives 25,000 miles. How many miles will each tire drive?
Problem 9
Lucy and her father share the same birthday. When Lucy turned 15 her father turned 3 times her age. On their birthday this year, Lucy’s father turned exactly twice as old as she turned. How old did Lucy turn this year?
Problem 10
The sum of three distinct 2-digit primes is 53. Two of the primes have a units digit of 3, and the other prime has a units digit of 7. What is the greatest of the three primes?
Problem 11
Ross and Max have a combined weight of 184 pounds. Ross and Seth have a combined weight of 197 pounds. Max and Seth have a combined weight of 189 pounds. How many pounds does Ross weigh?
Problem 12
What is the least possible denominator of a positive rational number whose repeating decimal representation is , where A and B are distinct digits?
Problem 13
A taxi charges $3.25 for the first mile and $0.45 for each additional mile thereafter. At most, how many miles can a passenger travel using $13.60? Express your answer as a mixed number.
Problem 14
Kali is mixing soil for a container garden. If she mixes 2 of soil containing 35% sand with 6 of soil containing 15% sand, what percent of the new mixture is sand?
Problem 15
Alex can run a complete lap around the school track in 1 minute, 28 seconds, and Becky can run a complete lap in 1 minute, 16 seconds. If they begin running at the same time and location, how many complete laps will Alex have run when Becky passes him for the first time?
Problem 16
The Beavers, Ducks, Platypuses and Narwhals are the only four basketball teams remaining in a single-elimination tournament. Each round consists of the teams playing in pairs with the winner of each game continuing to the next round. If the teams are randomly paired and each has an equal probability of winning any game, what is the probability that the Ducks and the Beavers will play each other in one of the two rounds? Express your answer as a common fraction.
Problem 17
A function f (x) is defined for all positive integers. If for any two positive integers a and b and , what is ?
Problem 18
Rectangle ABCD is shown with AB = 6 units and AD = 5 units. If AC is extended to point E such that AC is congruent to CE, what is the length of DE?
Problem 19
The digits of a 3-digit integer are reversed to form a new integer of greater value. The product of this new integer and the original integer is 91,567. What is the new integer?
Problem 20
Diagonal XZ of rectangle WXYZ is divided into three segments each of length 2 units by points M and N as shown. Segments MW and NY are parallel and are both perpendicular to XZ. What is the area of WXYZ? Express your answer in simplest radical form.
Problem 21
A spinner is divided into 5 sectors as shown. Each of the central angles of sectors 1 through 3 measures 60° while each of the central angles of sectors 4 and 5 measures 90°. If the spinner is spun twice, what is the probability that at least one spin lands on an even number? Express your answer as a common fraction.
Problem 22
The student council at Round Junior High School has eight members who meet at a circular table. If the four oficers must sit together in any order, how many distinguishable circular seating orders are possible? Two seating orders are distinguishable if one is not a rotation of the other.
Problem 23
Initially, a chip is placed in the upper-left corner square of a 15 × 10 grid of squares as shown. The chip can move in an L-shaped pattern, moving two squares in one direction (up, right, down or left) and then moving one square in a corresponding perpendicular direction. What is the minimum number of L-shaped moves needed to move the chip from its initial location to the square marked “X”?
Problem 24
On line segment AE, shown here, B is the midpoint of segment AC and D is the midpoint of segment CE. If AD = 17 units and BE = 21 units, what is the length of segment AE? Express your answer as a common fraction.
Problem 25
There are twelve different mixed numbers that can be created by substituting three of the numbers 1, 2, 3 and 5 for a, b and c in the expression , where . What is the mean of these twelve mixed numbers? Express your answer as a mixed number.
Problem 26
If 738 consecutive integers are added together, where the 178th number in the sequence is , what is the remainder when this sum is divided by 6?
Problem 27
Consider a coordinate plane with the points A(−5, 0) and B(5, 0). For how many points X in the plane is it true that XA and XB are both positive integer distances, each less than or equal to 10?
Problem 28
The function , where and are positive integers, is defined for all positive integers. If the range of f contains two numbers that differ by 20, what is the least possible value of ?
Problem 29
In the list of numbers 1, 2, …, 9999, the digits 0 through 9 are replaced with the letters A through J, respectively. For example, the number 501 is replaced by the string “FAB” and 8243 is replaced by the string “ICED”. The resulting list of 9999 strings is sorted alphabetically. How many strings appear before “CHAI” in this list?
Problem 30
A 12-sided game die has the shape of a hexagonal bipyramid, which consists of two pyramids, each with a regular hexagonal base of side length 1 cm and with height 1 cm, glued together along their hexagons. When this game die is rolled and lands on one of its triangular faces, how high of the ground is the opposite face? Express your answer as a common fraction in simplest radical form.