Difference between revisions of "2023 AIME II Problems/Problem 13"
m (→Solution) |
(→See also) |
||
Line 85: | Line 85: | ||
~Steven Chen (Professor Chen Education Palace, www.professorchenedub.com) | ~Steven Chen (Professor Chen Education Palace, www.professorchenedub.com) | ||
+ | |||
+ | ==Solution 2 (Simple)== | ||
+ | <math>\tan A = 2 \cos A \implies \sin A = 2 \cos^2 A \implies \sin^2 A + \cos^2 A = 4 \cos^4 A + \cos^2 A = 1 \implies \cos^2 A = \frac {\sqrt {17} – 1}{8}.</math> | ||
+ | <math>c_n = \sec^n A + \tan^n A = \frac {1}{\cos^n A} + 2^n \cos^n A = (4\cos^2 A +1)^{\frac {n}{2}}+(4 \cos^2 A)^{\frac {n}{2}} = (\frac {\sqrt {17} + 1}{2})^{\frac {n}{2}}+ (\frac {\sqrt {17} – 1}{2})^{\frac {n}{2}}.</math> | ||
+ | |||
+ | It is clear, that <math>c_n</math> is not integer if <math>n \ne 4k.</math> | ||
+ | Denote <math>x = (\frac {\sqrt {17} + 1}{2}, y = (\frac {\sqrt {17} - 1}{2} \implies x y = 4, x + y = \sqrt{17}, x – y = 1 \implies x^2 + y^2 = (x – y)^2 + 2xy = 9 = c_4.</math> | ||
+ | <math>c_8 = x^4 + y^4 = (x^2 + y^2)^2 – 2x^2 y^2 = 9^2 – 2 \cdot 16 = 49.</math> | ||
+ | <math>c_{4k+4} = x^{4k+4} + y^{4k+4} = (x^{4k} + y^{4k})(x^2+y^2)- (x^2 y^2)(x^{4k-2}+y^{4k-2} = 9 c_{4k}- 16 c_{4k – 4} \implies</math> | ||
+ | <math>c_12 = 9 c_8 – 16 c_4 = 9 \cdot 49 – 16 \cdot 9 = 9 \cdot 33 = 297.</math> | ||
+ | <math>c_16 = 9 c_12 – 16 c_8 = 9 \cdot 297 – 16 \cdot 49 = 1889.</math> | ||
+ | |||
+ | <math>c_{12m + 4} mod 10 = 9 \cdot c_{12m} mod 10 – 16 mod 10 \cdot c{12m – 4} mod 10 = (9 \cdot 7 – 6 \cdot 9} mod 10 = (3 – 4) mod 10 = 9.</math> | ||
+ | <math>c_{12m + 8} mod 10 = 9 \cdot c_{12m+4} mod 10 – 16 mod 10 \cdot c{12m } mod 10 = (9 \cdot 9 – 6 \cdot 7} mod 10 = (1 – 2) mod 10 = 9.</math> | ||
+ | <math>c_{12m + 12} mod 10 = 9 \cdot c_{12m+8} mod 10 – 16 mod 10 \cdot c{12m +4} mod 10 = (9 \cdot 9 – 6 \cdot 9} mod 10 = (1 – 4) mod 10 = 7 \implies</math> | ||
+ | |||
+ | The condition is satisfied iff <math>n = 12 k + 4</math> or <math>n = 12k + 8.</math> | ||
+ | |||
+ | If <math>n \le N</math> then the number of possible n is <math>[\frac {N}{4}] - [\frac {N}{12}].</math> | ||
+ | |||
+ | For <math>N = 1000</math> we get <math>[\frac {1000}{4}] - [\frac {1000}{12}] = 250 – 83 = </math>\boxed{167}.$ | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
== See also == | == See also == |
Revision as of 21:26, 4 March 2023
Problem
Let be an acute angle such that Find the number of positive integers less than or equal to such that is a positive integer whose units digit is
Solution
Denote . For any , we have
Next, we compute the first several terms of .
By solving equation , we get . Thus, , , , , .
In the rest of analysis, we set . Thus,
Thus, to get an integer, we have . In the rest of analysis, we only consider such . Denote and . Thus, with initial conditions , .
To get the units digit of to be 9, we have
Modulo 2, for , we have
Because , we always have for all .
Modulo 5, for , we have
We have , , , , , , . Therefore, the congruent values modulo 5 is cyclic with period 3. To get , we have .
From the above analysis with modulus 2 and modulus 5, we require .
For , because , we only need to count feasible with . The number of feasible is
~Steven Chen (Professor Chen Education Palace, www.professorchenedub.com)
Solution 2 (Simple)
It is clear, that is not integer if Denote
$c_{12m + 4} mod 10 = 9 \cdot c_{12m} mod 10 – 16 mod 10 \cdot c{12m – 4} mod 10 = (9 \cdot 7 – 6 \cdot 9} mod 10 = (3 – 4) mod 10 = 9.$ (Error compiling LaTeX. Unknown error_msg) $c_{12m + 8} mod 10 = 9 \cdot c_{12m+4} mod 10 – 16 mod 10 \cdot c{12m } mod 10 = (9 \cdot 9 – 6 \cdot 7} mod 10 = (1 – 2) mod 10 = 9.$ (Error compiling LaTeX. Unknown error_msg) $c_{12m + 12} mod 10 = 9 \cdot c_{12m+8} mod 10 – 16 mod 10 \cdot c{12m +4} mod 10 = (9 \cdot 9 – 6 \cdot 9} mod 10 = (1 – 4) mod 10 = 7 \implies$ (Error compiling LaTeX. Unknown error_msg)
The condition is satisfied iff or
If then the number of possible n is
For we get \boxed{167}.$
vladimir.shelomovskii@gmail.com, vvsss
See also
2023 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.