Difference between revisions of "2009 AMC 10B Problems/Problem 13"
Palaashgang (talk | contribs) (→Solution 2: Mod Arithmetic) |
(I LIKE TURTLES AND MAILBOXES!!!) |
||
Line 61: | Line 61: | ||
{{AMC10 box|year=2009|ab=B|num-b=12|num-a=14}} | {{AMC10 box|year=2009|ab=B|num-b=12|num-a=14}} | ||
− | {{MAA Notice | + | {{MAA Notice} |
Revision as of 16:16, 9 February 2023
Problem
As shown below, convex pentagon has sides , , , , and . The pentagon is originally positioned in the plane with vertex at the origin and vertex on the positive -axis. The pentagon is then rolled clockwise to the right along the -axis. Which side will touch the point on the -axis?
Solution
The perimeter of the polygon is . Hence as we roll the polygon to the right, every units the side will be the bottom side.
We have . Thus at some point in time we will get the situation when and is the bottom side. Obviously, at this moment .
After that, the polygon rotates around until point hits the axis at .
And finally, the polygon rotates around until point hits the axis at . At this point the side touches the point . So the answer is
Solution 2: Mod Arithmetic
The perimeter is and mod , so it will end up on side + a total of 8 more units. , but , so it ends on side for an answer of .
See Also
2009 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
{{MAA Notice}