Difference between revisions of "2023 AIME I Problems/Problem 4"
MRENTHUSIASM (talk | contribs) m |
MRENTHUSIASM (talk | contribs) (→Problem 4) |
||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
The sum of all positive integers <math>m</math> such that <math>\frac{13!}{m}</math> is a perfect square can be written as <math>2^a3^b5^c7^d11^e13^f,</math> where <math>a,b,c,d,e,</math> and <math>f</math> are positive integers. Find <math>a+b+c+d+e+f.</math> | The sum of all positive integers <math>m</math> such that <math>\frac{13!}{m}</math> is a perfect square can be written as <math>2^a3^b5^c7^d11^e13^f,</math> where <math>a,b,c,d,e,</math> and <math>f</math> are positive integers. Find <math>a+b+c+d+e+f.</math> | ||
Revision as of 14:46, 8 February 2023
Problem
The sum of all positive integers such that is a perfect square can be written as where and are positive integers. Find
Solution 1
We first rewrite as a prime factorization, which is
For the fraction to be a square, it needs each prime to be an even power. This means must contain . Also, can contain any even power of up to , any odd power of up to , and any even power of up to . The sum of is Therefore, the answer is .
~chem1kall
Solution 2
The prime factorization of is To get a perfect square, we must have , where , , .
Hence, the sum of all feasible is
Therefore, the answer is
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)