Difference between revisions of "2023 AIME I Problems/Problem 10"
(→Bounds and Decimal Part Analysis) |
R00tsofunity (talk | contribs) m |
||
Line 1: | Line 1: | ||
==Problem 10== | ==Problem 10== | ||
− | There exists a unique positive integer <math>a</math> for which the sum <cmath>U=\sum_{n=1}^{2023}\left\lfloor\dfrac{n^{2}-na}{5}\right\rfloor</cmath> is an integer strictly between <math>-1000</math> and <math>1000</math>. For that | + | There exists a unique positive integer <math>a</math> for which the sum <cmath>U=\sum_{n=1}^{2023}\left\lfloor\dfrac{n^{2}-na}{5}\right\rfloor</cmath> is an integer strictly between <math>-1000</math> and <math>1000</math>. For that unique <math>a</math>, find <math>a+U</math>. |
(Note that <math>\lfloor x\rfloor</math> denotes the greatest integer that is less than or equal to <math>x</math>.) | (Note that <math>\lfloor x\rfloor</math> denotes the greatest integer that is less than or equal to <math>x</math>.) |
Revision as of 12:59, 8 February 2023
Contents
Problem 10
There exists a unique positive integer for which the sum is an integer strictly between and . For that unique , find .
(Note that denotes the greatest integer that is less than or equal to .)
Solution (Bounds and Decimal Part Analysis)
Define .
First, we bound .
We establish an upper bound of . We have
We establish a lower bound of . We have
We notice that if , then . Thus,
Because and , we must have either or .
For , we get a unique . For , there is no feasible .
Therefore, . Thus .
Next, we compute .
Let , where .
We have
Therefore,
Therefor, .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by Punxsutawney Phil
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2023 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.