Difference between revisions of "2023 AIME I Problems/Problem 5"
(→Solution 2) |
(→Solution 2) |
||
Line 24: | Line 24: | ||
==Solution 2== | ==Solution 2== | ||
− | Drop a height from point P to line AC and BC. | + | Drop a height from point P to line AC and BC. Call these two points to be X and Y, respectively. Notice that the intersection of the diagonals of square ABCD meets at a right angle and at the center of the circumcircle, call this intersection point O. |
+ | Notice that OXPY is a rectangle, so OX is the distance from P to line BD. |
Revision as of 12:34, 8 February 2023
Problem (not official; when the official problem statement comes out, please update this page; to ensure credibility until the official problem statement comes out, please add an O if you believe this is correct and add an X if you believe this is incorrect):
Let there be a circle circumscribing a square ABCD, and let P be a point on the circle. PA*PC = 56, PB*PD = 90. What is the area of the square?
Solution
We may assume that is between and . Let , , , , and . We have , because is a diagonal. Similarly, . Therefore, . Similarly, .
By Ptolemy's Theorem on , , and therefore . By Ptolemy's on , , and therefore . By squaring both equations, we obtain
Thus, , and . Plugging these values into , we obtain , and . Now, we can solve using and (though using and yields the same solution for ).
The answer is .
~mathboy100
Solution 2
Drop a height from point P to line AC and BC. Call these two points to be X and Y, respectively. Notice that the intersection of the diagonals of square ABCD meets at a right angle and at the center of the circumcircle, call this intersection point O. Notice that OXPY is a rectangle, so OX is the distance from P to line BD.