Difference between revisions of "2007 iTest Problems/Problem 2"
(→Solution) |
m (→Alternate Solution) |
||
Line 10: | Line 10: | ||
Thus, <math>b=2007-5a</math>, and substituting, <math>3a+14049-35a=1977\Rightarrow</math><math>-32a=-12072\Rightarrow a=377.25</math>. Thus, <math>b=2007-1886.25\Rightarrow b=120.75</math>. Thus, <math>a+b=377.25+120.75=498</math><math>\Rightarrow \boxed{\mathrm{B}}</math> | Thus, <math>b=2007-5a</math>, and substituting, <math>3a+14049-35a=1977\Rightarrow</math><math>-32a=-12072\Rightarrow a=377.25</math>. Thus, <math>b=2007-1886.25\Rightarrow b=120.75</math>. Thus, <math>a+b=377.25+120.75=498</math><math>\Rightarrow \boxed{\mathrm{B}}</math> | ||
− | + | ==Alternate Solution== | |
We have <math>3a+7b=1977</math> and <math>5a+b=2007</math>. Notice the symmetry we have if we add the two equations together: <math>8a+8b=3984</math>. Dividing by 8, we have <math>a+b=498</math>. <math>\boxed{\mathrm{B}}</math> | We have <math>3a+7b=1977</math> and <math>5a+b=2007</math>. Notice the symmetry we have if we add the two equations together: <math>8a+8b=3984</math>. Dividing by 8, we have <math>a+b=498</math>. <math>\boxed{\mathrm{B}}</math> | ||
Latest revision as of 20:05, 4 February 2023
Problem
Find if and satisfy and .
Solution
and .
Thus, , and substituting, . Thus, . Thus,
Alternate Solution
We have and . Notice the symmetry we have if we add the two equations together: . Dividing by 8, we have .
See Also
2007 iTest (Problems, Answer Key) | ||
Preceded by: Problem 1 |
Followed by: Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4 |