Difference between revisions of "2023 AMC 8 Problems/Problem 17"

(Solution 1)
Line 50: Line 50:
  
 
==Solution 1==
 
==Solution 1==
We color face <math>6</math> red and face <math>5</math> yellow. Note that from the octahedron, face <math>5</math> and face <math>?</math> do not share anything in common. From the net, face <math>5</math> shares at least one vertex with all other faces except face <math>1,</math> as shown in green. Therefore, the answer is <math>\boxed{\textbf{(A)}\ 1}.</math>
+
We color face <math>6</math> red and face <math>5</math> yellow. Note that from the octahedron, face <math>5</math> and face <math>?</math> do not share anything in common. From the net, face <math>5</math> shares at least one vertex with all other faces except face <math>1,</math> as shown in green.  
<asy>
+
 
/*
+
Therefore, the answer is <math>\boxed{\textbf{(A)}\ 1}.</math>
Diagram by TheMathGuyd
+
 
Edited by MRENTHUSIASM
 
*/
 
import graph;
 
// The Solid
 
// To save processing time, do not use three (dimensions)
 
// Project (roughly) to two
 
size(15cm);
 
pair Fr, Lf, Rt, Tp, Bt, Bk;
 
Lf=(0,0);
 
Rt=(12,1);
 
Fr=(7,-1);
 
Bk=(5,2);
 
Tp=(6,6.7);
 
Bt=(6,-5.2);
 
fill(Lf--Bk--Bt--cycle,red);
 
fill(Rt--Fr--Tp--cycle,green);
 
draw(Lf--Fr--Rt);
 
draw(Lf--Tp--Rt);
 
draw(Lf--Bt--Rt);
 
draw(Tp--Fr--Bt);
 
draw(Lf--Bk--Rt,dashed);
 
draw(Tp--Bk--Bt,dashed);
 
label(rotate(-8.13010235)*slant(0.1)*"$Q$", (4.2,1.6));
 
label(rotate(21.8014095)*slant(-0.2)*"$?$", (8.5,2.05));
 
dot(Lf,linewidth(5));
 
pair g = (-8,0); // Define Gap transform
 
real a = 8;
 
draw(g+(-a/2,1)--g+(a/2,1), Arrow()); // Make arrow
 
// Time for the NET
 
pair DA,DB,DC,CD,O;
 
DA = (4*sqrt(3),0);
 
DB = (2*sqrt(3),6);
 
DC = (DA+DB)/3;
 
CD = conj(DC);
 
O=(0,0);
 
transform trf=shift(3g+(0,3));
 
path NET = O--(-2*DA)--(-2DB)--(-DB)--(2DA-DB)--DB--O--DA--(DA-DB)--O--(-DB)--(-DA)--(-DA-DB)--(-DB);
 
fill(trf*((-DB)--(DA-DB)--O)--cycle,red);
 
fill(trf*(-2DA--(-DA)--(-DA-DB))--cycle,green);
 
draw(trf*NET);
 
label("$7$",trf*DC);
 
label("$Q$",trf*DC+DA-DB);
 
label("$5$",trf*DC-DB);
 
label("$3$",trf*DC-DA-DB);
 
label("$6$",trf*CD);
 
label("$4$",trf*CD-DA);
 
label("$2$",trf*CD-DA-DB);
 
label("$1$",trf*CD-2DA);
 
dot(trf*(DA-DB),linewidth(5));
 
</asy>
 
 
~UnknownMonkey, apex304, MRENTHUSIASM
 
~UnknownMonkey, apex304, MRENTHUSIASM
  

Revision as of 03:08, 27 January 2023

Problem

A regular octahedron has eight equilateral triangle faces with four faces meeting at each vertex. Jun will make the regular octahedron shown on the right by folding the piece of paper shown on the left. Which numbered face will end up to the right of $Q$?

[asy] // Diagram by TheMathGuyd import graph; // The Solid // To save processing time, do not use three (dimensions) // Project (roughly) to two size(15cm); pair Fr, Lf, Rt, Tp, Bt, Bk; Lf=(0,0); Rt=(12,1); Fr=(7,-1); Bk=(5,2); Tp=(6,6.7); Bt=(6,-5.2); draw(Lf--Fr--Rt); draw(Lf--Tp--Rt); draw(Lf--Bt--Rt); draw(Tp--Fr--Bt); draw(Lf--Bk--Rt,dashed); draw(Tp--Bk--Bt,dashed); label(rotate(-8.13010235)*slant(0.1)*"$Q$", (4.2,1.6)); label(rotate(21.8014095)*slant(-0.2)*"$?$", (8.5,2.05)); pair g = (-8,0); // Define Gap transform real a = 8; draw(g+(-a/2,1)--g+(a/2,1), Arrow()); // Make arrow // Time for the NET pair DA,DB,DC,CD,O; DA = (4*sqrt(3),0); DB = (2*sqrt(3),6); DC = (DA+DB)/3; CD = conj(DC); O=(0,0); transform trf=shift(3g+(0,3)); path NET = O--(-2*DA)--(-2DB)--(-DB)--(2DA-DB)--DB--O--DA--(DA-DB)--O--(-DB)--(-DA)--(-DA-DB)--(-DB); draw(trf*NET); label("$7$",trf*DC); label("$Q$",trf*DC+DA-DB); label("$5$",trf*DC-DB); label("$3$",trf*DC-DA-DB); label("$6$",trf*CD); label("$4$",trf*CD-DA); label("$2$",trf*CD-DA-DB); label("$1$",trf*CD-2DA); [/asy]

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

Solution 1

We color face $6$ red and face $5$ yellow. Note that from the octahedron, face $5$ and face $?$ do not share anything in common. From the net, face $5$ shares at least one vertex with all other faces except face $1,$ as shown in green.

Therefore, the answer is $\boxed{\textbf{(A)}\ 1}.$

~UnknownMonkey, apex304, MRENTHUSIASM

Solution 2

We label the octohedron going triangle by triangle until we reach the $?$ triangle. The triangle to the left of the $Q$ should be labeled with a $6$. Underneath triangle $6$ is triangle $5$. The triangle to the right of triangle $5$ is triangle $4$ and further to the right is triangle $3$. Finally, the side of triangle $3$ under triangle $Q$ is $2$, so the triangle to the right of $Q$ is $\boxed{\textbf{(A)}\ 1}$.

~hdanger

Animated Video Solution

https://youtu.be/ECqljkDeA5o

~Star League (https://starleague.us)

Video Solution by OmegaLearn (Using 3D Visualization)

https://youtu.be/gIjhiw1CUgY

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=3789

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png