Difference between revisions of "2019 AMC 8 Problems/Problem 25"

m
(See Also)
Line 44: Line 44:
  
 
==See Also==
 
==See Also==
{{AMC8 box|year=2019|num-b=24|after=Last Problem}}
 
  
 
{{MAA Notice}}
 
{{MAA Notice}}
  
 
[[Category:Introductory Combinatorics Problems]]
 
[[Category:Introductory Combinatorics Problems]]

Revision as of 16:34, 22 January 2023

Problem 25

Alice has $24$ apples. In how many ways can she share them with Becky and Chris so that each of the three people has at least two apples? $\textbf{(A) }105\qquad\textbf{(B) }114\qquad\textbf{(C) }190\qquad\textbf{(D) }210\qquad\textbf{(E) }380$

Solution 1

We use stars and bars. Let Alice get $k$ apples, let Becky get $r$ apples, let Chris get $y$ apples. \[\implies k + r + y = 24\]We can manipulate this into an equation which can be solved using stars and bars.

All of them get at least $2$ apples, so we can subtract $2$ from $k$, $2$ from $r$, and $2$ from $y$. \[\implies (k - 2) + (r - 2) + (y - 2) = 18\]Let $k' = k - 2$, let $r' = r - 2$, let $y' = y - 2$. \[\implies k' + r' + y' = 18\]We can allow either of them to equal to $0$; hence, this can be solved by stars and bars.


By Stars and Bars, our answer is just $\binom{18 + 3 - 1}{3 - 1} = \binom{20}{2} = \boxed{\textbf{(C)}\ 190}$.

Solution (Answer Choices)

Consider an unordered triple $(a,b,c)$ where $a+b+c=24$ and $a,b,c$ are not necessarily distinct. Then, we will either have $1$, $3$, or $6$ distinguishable ways to assign $a$, $b$, and $c$ to Alice, Becky, and Chris. Thus, our answer will be $x+3y+6z$ for some nonnegative integers $x,y,z$. Notice that we only have $1$ way to assign the numbers $a,b,c$ to Alice, Becky, and Chris when $a=b=c$. As this only happens $1$ way ($a=b=c=8$), our answer is $1+3y+6z$ for some $y,z$. Finally, notice that this implies the answer is $1$ mod $3$. The only answer choice that satisfies this is $\boxed{\textbf{(C) }190}$.

-BorealBear

Video Solution by OmegaLearn

https://youtu.be/5UojVH4Cqqs?t=5131

~ pi_is_3.14

Video Solutions

https://www.youtube.com/watch?v=EJzSOPXULBc

- Happytwin

https://www.youtube.com/watch?v=wJ7uvypbB28

https://www.youtube.com/watch?v=2dBUklyUaNI


https://www.youtube.com/watch?v=3qp0wTq-LI0&list=PLLCzevlMcsWNBsdpItBT4r7Pa8cZb6Viu&index=7

~ MathEx

https://youtu.be/8kzjB60pBrA

~savannahsolver

See Also

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png