Difference between revisions of "Gossard perspector"
(→Gossard perspector for right triangle) |
(→Gossard perspector of right triangle) |
||
Line 15: | Line 15: | ||
<math>Go</math> is the midpoint of <math>AA'.</math> <math>A</math> is orthocenter of <math>\triangle ABC, A'</math> is circumcenter of <math>\triangle ABC,</math> so <math>Go</math> is midpoint of <math>OH.</math> | <math>Go</math> is the midpoint of <math>AA'.</math> <math>A</math> is orthocenter of <math>\triangle ABC, A'</math> is circumcenter of <math>\triangle ABC,</math> so <math>Go</math> is midpoint of <math>OH.</math> | ||
+ | |||
<math>M = A'C' \cap AB</math> is the midpoint <math>AB, N = A'B' \cap AC</math> is the midpoint <math>AC, \triangle A'BM = \triangle CNA' \sim \triangle CBA</math> with coefficient <math>k = \frac {1}{2}.</math> | <math>M = A'C' \cap AB</math> is the midpoint <math>AB, N = A'B' \cap AC</math> is the midpoint <math>AC, \triangle A'BM = \triangle CNA' \sim \triangle CBA</math> with coefficient <math>k = \frac {1}{2}.</math> | ||
Revision as of 12:12, 10 January 2023
Gossard perspector X(402) and Gossard triangle
Euler proved that the Euler line of a given triangle together with two of its sides forms a triangle whose Euler line is parallel with the third side of the given triangle.
Gossard proved that the three Euler lines of the triangles formed by the Euler line and the sides, taken by twos, of a given triangle, form a triangle triply perspective with the given triangle and having the same Euler line. The orthocenters, circumcenters and centroids of these two triangles are symmetrically placed as to the center of perspective which known as Gossard perspector or Kimberling point
Gossard perspector of right triangle
It is clear that the Euler line of right triangle meet the sidelines and of at and where is the midpoint of
Let be the triangle formed by the Euler lines of the and the line contains and parallel to the vertex being the intersection of the Euler line of the and the vertex being the intersection of the Euler line of the and
We call the triangle as the Gossard triangle of
Let be any right triangle and let be its Gossard triangle. Then the lines and are concurrent. We call the point of concurrence as the Gossard perspector of
is the midpoint of is orthocenter of is circumcenter of so is midpoint of
is the midpoint is the midpoint with coefficient
Any right triangle and its Gossard triangle are congruent.
Any right triangle and its Gossard triangle have the same Euler line.
The Gossard triangle of the right is the reflection of in the Gossard perspector.
vladimir.shelomovskii@gmail.com, vvsss