Difference between revisions of "2003 USAMO Problems/Problem 4"

m (Solution 2)
m (Solution 1)
Line 7: Line 7:
  
 
Extend segment <math>DM</math> through <math>M</math> to <math>G</math> such that <math>FG\parallel CD</math>.
 
Extend segment <math>DM</math> through <math>M</math> to <math>G</math> such that <math>FG\parallel CD</math>.
 
+
<asy>
<center>[[File:2003usamo4-1.png]]</center>
+
defaultpen(fontsize(10)+0.6); size(250);
 
+
var theta=22, r=0.58;
 +
pair B=origin, A=dir(theta), C=A+(rotate(78)*0.8*A), O=IP(CR(B,r),CR(A,r));
 +
path c=CR(O,r);
 +
pair D=IP(c,A--C), E=IP(c,B--C), F=extension(A,B,D,E), M=extension(B,D,C,F), G=extension(D,M,F,F+C-D);
 +
draw(A--B--C--A^^E--F--C^^A--F^^B--M^^E--M); draw(c); draw(F--G--C^^M--G,gray+0.4);
 +
dot("$A$",A,dir(F-E)); dot("$B$",B,2*dir(B-A)); dot("$C$",C,1.5*dir(C-A)); dot("$D$",D,2.5*dir(250)); dot("$E$",E,2.5*dir(C-A)); dot("$F$",F,dir(F-E)); dot("$M$",M,2.5*dir(255)); dot("$G$",G,dir(G-M));
 +
</asy>
 
Then <math>MF = MC</math> if and only if quadrilateral <math>CDFG</math> is a parallelogram, or, <math>FD\parallel CG</math>. Hence <math>MC = MF</math> if and only if <math>\angle GCD = \angle FDA</math>, that is, <math>\angle FDA + \angle CGF = 180^\circ</math>.
 
Then <math>MF = MC</math> if and only if quadrilateral <math>CDFG</math> is a parallelogram, or, <math>FD\parallel CG</math>. Hence <math>MC = MF</math> if and only if <math>\angle GCD = \angle FDA</math>, that is, <math>\angle FDA + \angle CGF = 180^\circ</math>.
  

Revision as of 01:36, 10 January 2023

Problem

Let $ABC$ be a triangle. A circle passing through $A$ and $B$ intersects segments $AC$ and $BC$ at $D$ and $E$, respectively. Lines $AB$ and $DE$ intersect at $F$, while lines $BD$ and $CF$ intersect at $M$. Prove that $MF = MC$ if and only if $MB\cdot MD = MC^2$.

Solutions

Solution 1

Extend segment $DM$ through $M$ to $G$ such that $FG\parallel CD$. [asy] defaultpen(fontsize(10)+0.6); size(250); var theta=22, r=0.58; pair B=origin, A=dir(theta), C=A+(rotate(78)*0.8*A), O=IP(CR(B,r),CR(A,r)); path c=CR(O,r); pair D=IP(c,A--C), E=IP(c,B--C), F=extension(A,B,D,E), M=extension(B,D,C,F), G=extension(D,M,F,F+C-D); draw(A--B--C--A^^E--F--C^^A--F^^B--M^^E--M); draw(c); draw(F--G--C^^M--G,gray+0.4); dot("$A$",A,dir(F-E)); dot("$B$",B,2*dir(B-A)); dot("$C$",C,1.5*dir(C-A)); dot("$D$",D,2.5*dir(250)); dot("$E$",E,2.5*dir(C-A)); dot("$F$",F,dir(F-E)); dot("$M$",M,2.5*dir(255)); dot("$G$",G,dir(G-M)); [/asy] Then $MF = MC$ if and only if quadrilateral $CDFG$ is a parallelogram, or, $FD\parallel CG$. Hence $MC = MF$ if and only if $\angle GCD = \angle FDA$, that is, $\angle FDA + \angle CGF = 180^\circ$.

Because quadrilateral $ABED$ is cyclic, $\angle FDA = \angle ABE$. It follows that $MC = MF$ if and only if \[180^\circ = \angle FDA + \angle CGF = \angle ABE + \angle CGF,\] that is, quadrilateral $CBFG$ is cyclic, which is equivalent to \[\angle CBM = \angle CBG = \angle CFG = \angle DCF = \angle DCM.\] Because $\angle DMC = \angle CMB$, $\angle CBM = \angle DCM$ if and only if triangles $BCM$ and $CDM$ are similar, that is \[\frac{CM}{BM} = \frac{DM}{CM},\] or $MB\cdot MD = MC^2$.

Solution 2

We first assume that $MB\cdot MD = MC^2$. Because $\frac{MC}{MD} = \frac{MB}{MC}$ and $\angle CMD = \angle BMC$, triangles $CMD$ and $BMC$ are similar. Consequently, $\angle MCD = \angle MBC$. This exact condition can also be visualized through power of M with respect to the circumcircle of triangle $BDC$ and getting the angle condition from the alternate segment theorem.


2003usamo4-2.png

Because quadrilateral $ABED$ is cyclic, $\angle DAE = \angle DBE$. Hence \[\angle FCA = \angle MCD = \angle MBC = \angle DBE = \angle DAE = \angle CAE,\] implying that $AE\parallel CF$, so $\angle AEF = \angle CFE$. Because quadrilateral $ABED$ is cyclic, $\angle ABD = \angle AED$. Hence \[\angle FBM = \angle ABD = \angle AED = \angle AEF = \angle CFE = \angle MFD.\] Because $\angle FBM = \angle DFM$ and $\angle FMB = \angle DMF$, triangles $BFM$ and $FDM$ are similar. Consequently, $\frac{FM}{DM} = \frac{BM}{FM}$, or $FM^2 = BM\cdot DM = CM^2$. Therefore $MC^2 = MB\cdot MD$ implies $MC = MF$.

Now we assume that $MC = MF$. Applying Ceva's Theorem to triangle $BCF$ and cevians $BM, CA, FE$ gives \[\frac{BA}{AF}\cdot\frac{FM}{MC}\cdot\frac{CE}{EB} = 1,\] implying that $\frac{BA}{AF} = \frac{BE}{EC}$, so $AE\parallel CF$.

Consequently, $\angle DCM = \angle DAE$. Because quadrilateral $ABED$ is cyclic, $\angle DAE = \angle DBE$. Hence \[\angle DCM = \angle DAE = \angle DBE = \angle CBM.\] Because $\angle CBM = \angle DCM$ and $\angle CMB = \angle DMC$, triangles $BCM$ and $CDM$ are similar. Consequently, $\frac{CM}{DM} = \frac{BM}{CM}$, or $CM^2 = BM\cdot DM$.

Combining the above, we conclude that $MF = MC$ if and only if $MB\cdot MD = MC^2$.


Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

See also

2003 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6
All USAMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png