Difference between revisions of "2021 Fall AMC 12B Problems/Problem 21"
m |
R00tsofunity (talk | contribs) (AMC 12 box missing.) |
||
Line 103: | Line 103: | ||
==Video Solution by The Power of Logic== | ==Video Solution by The Power of Logic== | ||
https://youtu.be/SHMW3QG4Uu4 | https://youtu.be/SHMW3QG4Uu4 | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2021 Fall|ab=B|num-a=21|num-b=19}} | ||
+ | {{MAA Notice}} |
Revision as of 23:36, 5 January 2023
Contents
Problem
For real numbers , let where . For how many values of with does
Solution 1
Let . Now . and so there is a real root between and . The other 's must be complex conjugates since all coefficients of the polynomial are real. The magnitude of those complex 's squared is which is greater than . If is real number then must have magnitude of , but none of the solutions for have magnitude of , so the answer is ~lopkiloinm
Solution 2
For , we get So either , i.e. or , i.e. .
For none of these values do we get .
Therefore, the answer is .
Solution 3
We have
Denote . Hence, this problem asks us to find the number of with that satisfy
Taking imaginary part of both sides, we have The sixth equality follows from the property that .
Therefore, we have either or or .
Case 1: .
Because , .
However, these solutions fail to satisfy Equation (1).
Therefore, there is no solution in this case.
Case 2: .
Because , .
However, these solutions fail to satisfy Equation (1).
Therefore, there is no solution in this case.
Case 3: .
Because , .
However, these solutions fail to satisfy Equation (1).
Therefore, there is no solution in this case.
All cases above imply that there is no solution in this problem.
Therefore, the answer is .
~Steven Chen (www.professorchenedu.com)
Solution 4
Let , so by De Moivre . The problem essentially asks for the number of real roots of which lie on the complex unit circle. Let be a root of , and note that we can't have , else . Thus, suppose henceforth that . We then have , hence the argument of is either the argument of , or the argument of . Since is real, it follows that . Now, we can check all of these values and find that none of them work, yielding an answer of .
-IAmTheHazard
Video Solution
~MathProblemSolvingSkills.com
Video Solution by Mathematical Dexterity
https://www.youtube.com/watch?v=vhAc0P09czI
Video Solution by The Power of Logic
See Also
2021 Fall AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.