Difference between revisions of "2022 AMC 12A Problems/Problem 23"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 12: | Line 12: | ||
It is clear that <math>L_n\equiv0\pmod{p},</math> so we test whether <math>\sum_{i=1}^{n}\frac{L_n}{i}\equiv0\pmod{p}.</math> Note that <cmath>\sum_{i=1}^{n}\frac{L_n}{i} \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p^e) \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p).</cmath> | It is clear that <math>L_n\equiv0\pmod{p},</math> so we test whether <math>\sum_{i=1}^{n}\frac{L_n}{i}\equiv0\pmod{p}.</math> Note that <cmath>\sum_{i=1}^{n}\frac{L_n}{i} \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p^e) \equiv \sum_{i=1}^{\left\lfloor\tfrac np\right\rfloor}\frac{L_n}{ip^e} \ (\operatorname{mod} \ p).</cmath> | ||
− | We construct the following table: | + | We construct the following table for <math>v_p(L_n)=e:</math> |
− | <cmath>\begin{array}{c|l | + | <cmath>\begin{array}{c|c|l|c} |
− | \textbf{Case} & \hspace{22.75mm}\textbf{Sum} | + | \textbf{Case of }\boldsymbol{(p,e)} & \textbf{Interval of }\boldsymbol{n} & \hspace{22.75mm}\textbf{Sum} & \boldsymbol{\stackrel{?}{\equiv}0\ (\operatorname{mod} \ p)} \\ [0.5ex] |
\hline\hline | \hline\hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (2,1) & [2,3] & L_n/2 & \\ | |
− | + | (2,2) & [4,7] & L_n/4 & \\ | |
− | + | (2,3) & [8,15] & L_n/8 & \\ | |
− | + | (2,4) & [16,22] & L_n/16 & \\ [0.5ex] | |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (3,1) & [3,5] & L_n/3 & \\ | |
− | & L_n/3 + L_n/6 | + | & [6,8] & L_n/3 + L_n/6 & \checkmark \\ |
− | + | (3,2) & [9,17] & L_n/9 & \\ | |
− | & L_n/9 + L_n/18 | + | & [18,22] & L_n/9 + L_n/18 & \checkmark \\ [0.5ex] |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (5,1) & [5,9] & L_n/5 & \\ | |
− | & L_n/5 + L_n/10 & [ | + | & [10,14] & L_n/5 + L_n/10 & \\ |
− | & L_n/5 + L_n/10 + L_n/15 | + | & [15,19] & L_n/5 + L_n/10 + L_n/15 & \\ |
− | & L_n/5 + L_n/10 + L_n/15 + L_n/20 | + | & [20,22] & L_n/5 + L_n/10 + L_n/15 + L_n/20 & \checkmark \\ [0.5ex] |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (7,1) & [7,13] & L_n/7 & \\ | |
− | & L_n/7 + L_n/14 & [ | + | & [14,20] & L_n/7 + L_n/14 & \\ |
− | & L_n/7 + L_n/14 + L_n/21 | + | & [21,22] & L_n/7 + L_n/14 + L_n/21 & \\ [0.5ex] |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (11,1) & [11,21] & L_n/11 & \\ | |
− | & L_n/11 + L_n/22 | + | & \{22\} & L_n/11 + L_n/22 & \\ [0.5ex] |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (13,1) & [13,22] & L_n/13 & \\ [0.5ex] | |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (17,1) & [17,22] & L_n/17 & \\ [0.5ex] | |
\hline | \hline | ||
& & & \\ [-2ex] | & & & \\ [-2ex] | ||
− | + | (19,1) & [19,22] & L_n/19 & \\ [0.5ex] | |
\end{array}</cmath> | \end{array}</cmath> | ||
+ | Note that: | ||
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li></li><p> | ||
+ | <li></li><p> | ||
+ | </ol> | ||
+ | Together, there are <math>\boxed{\textbf{(D) }8}</math> such integers <math>n,</math> namely <cmath>6,7,8,18,19,20,21,22.</cmath> | ||
+ | |||
+ | ~MRENTHUSIASM | ||
==Solution 2== | ==Solution 2== |
Revision as of 01:01, 4 January 2023
Problem
Let and be the unique relatively prime positive integers such that Let denote the least common multiple of the numbers . For how many integers with is ?
Solution 1
We are given that Since we need
For all primes such that let be the largest power of that is a factor of
It is clear that so we test whether Note that We construct the following table for Note that:
Together, there are such integers namely
~MRENTHUSIASM
Solution 2
We will use the following lemma to solve this problem.
Denote by the prime factorization of . For any , denote , where and are relatively prime. Then if and only if for any , is not a multiple of .
Now, we use the result above to solve this problem.
Following from this lemma, the list of with and is
Therefore, the answer is .
Note: Detailed analysis of this problem (particularly the motivation and the proof of the lemma above) can be found in my video solution below.
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~MathProblemSolvingSkills.com
See Also
2022 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 22 |
Followed by Problem 24 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.