Difference between revisions of "2018 AMC 8 Problems/Problem 15"
m (→Solution 1) |
m (→Solution 2) |
||
Line 19: | Line 19: | ||
==Solution 2== | ==Solution 2== | ||
− | Let the radius of the two smaller circles be <math>r</math>. It follows that the area of one of the smaller circles is <math>{\pi}r^2</math>. Thus, the area of the two inner circles combined would evaluate to <math>2{\pi}r^2</math> which is <math>1</math>. Since the radius of the bigger circle is two times that of the smaller circles(the diameter), the radius of the larger circle in terms of <math>r</math> would be <math>2r</math>. The area of the larger circle would come to <math>(2r)^2{\pi} = 4{\pi}r^2</math>. | + | Let the radius of the two smaller circles be <math>r</math>. It follows that the area of one of the smaller circles is <math>{\pi}r^2</math>. Thus, the area of the two inner circles combined would evaluate to <math>2{\pi}r^2</math> which is <math>1</math>. Since the radius of the bigger circle is two times that of the smaller circles (the diameter), the radius of the larger circle in terms of <math>r</math> would be <math>2r</math>. The area of the larger circle would come to <math>(2r)^2{\pi} = 4{\pi}r^2</math>. |
− | Subtracting the area of the smaller circles from that of the larger circle(since that would be the shaded region), we have <cmath>4{\pi}r^2 - 2{\pi}r^2 = 2{\pi}r^2 = 1.</cmath> | + | Subtracting the area of the smaller circles from that of the larger circle (since that would be the shaded region), we have <cmath>4{\pi}r^2 - 2{\pi}r^2 = 2{\pi}r^2 = 1.</cmath> |
− | Therefore, the area of the shaded region is <math>\boxed{\textbf{(D) } 1}</math> | + | Therefore, the area of the shaded region is <math>\boxed{\textbf{(D) } 1}</math>. |
==Video Solutions == | ==Video Solutions == |
Revision as of 06:05, 1 January 2023
Problem
In the diagram below, a diameter of each of the two smaller circles is a radius of the larger circle. If the two smaller circles have a combined area of square unit, then what is the area of the shaded region, in square units?
Solution 1
Let the radius of the large circle be . Then, the radii of the smaller circles are . The areas of the circles are directly proportional to the square of the radii, so the ratio of the area of the small circle to the large one is . This means the combined area of the 2 smaller circles is half of the larger circle, and therefore the shaded region is equal to the combined area of the 2 smaller circles, which is .
Solution 2
Let the radius of the two smaller circles be . It follows that the area of one of the smaller circles is . Thus, the area of the two inner circles combined would evaluate to which is . Since the radius of the bigger circle is two times that of the smaller circles (the diameter), the radius of the larger circle in terms of would be . The area of the larger circle would come to .
Subtracting the area of the smaller circles from that of the larger circle (since that would be the shaded region), we have
Therefore, the area of the shaded region is .
Video Solutions
~savannahsolver
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.