Difference between revisions of "2001 AIME I Problems/Problem 9"
(→Solution) |
m (Improper formatting for the answer) |
||
Line 41: | Line 41: | ||
&=1-\frac{2}{3}+\frac{\frac{4}{9}-\frac{2}{5}}{2}\\ | &=1-\frac{2}{3}+\frac{\frac{4}{9}-\frac{2}{5}}{2}\\ | ||
&=\frac{16}{45} | &=\frac{16}{45} | ||
− | \end{align*},</cmath> so the answer is <math>\boxed{ | + | \end{align*},</cmath> so the answer is <math>\boxed{061}</math> |
=== Note === | === Note === |
Revision as of 17:39, 27 November 2022
Problem
In triangle , , and . Point is on , is on , and is on . Let , , and , where , , and are positive and satisfy and . The ratio of the area of triangle to the area of triangle can be written in the form , where and are relatively prime positive integers. Find .
Solution
Solution 1
We let denote area; then the desired value is
Using the formula for the area of a triangle , we find that
and similarly that and . Thus, we wish to find We know that , and also that . Substituting, the answer is , and .
Solution 2
By the barycentric area formula, our desired ratio is equal to so the answer is
Note
Because the givens in the problem statement are all regarding the ratios of the sides, the side lengths of triangle , namely , are actually not necessary to solve the problem. This is clearly demonstrated in both of the above solutions, as the side lengths are not used at all.
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.